2017-01-10 04:23 | カテゴリ:未分類
 

昨年「5月に、南相馬で住民がヒヨドリの死体を拾ったので、オートラジオグラフの撮像が可能かどうか」という問い合わせが、群像舎の 岩崎 雅典監督からあった。以前にキビタキとツバメの放射線像の撮像に成功した経験があったので「やってみましょう」という返事をしたら、ヒヨドリの冷凍サンプルが宅急便で送られてきた。
        
   2012/05/29 : キビタキの幼鳥の被爆像
   2016/03/06 : ツバメの放射能汚染像について

     

サーベイメーターでヒヨドリの体をくまなくスキャンすると、どうやら確かに放射線が出ているように思われたので、慎重に作業に取りかかった。

       

まず、この死体からは胸元から血が出ていた。鳶や鷹か、はたまたイタチかテンなどの陸上の動物に攻撃されて逃げたが力尽きて墜落たのかもしれない。この血の中にも内部被曝した放射能の一部があるかもしれないので、ペーパータオルをあてがった。その上で、鳥の羽を伸ばし、鳥の頭を横向きにして、上から本で押して、全体を電子レンジで十分乾燥したシリカゲルが詰まったお菓子の四角いブリキ製の箱の中に入れて、完全にふたをして密閉した。一ヶ月後にふたを開けて、乾燥死体を取り出して、これをサランラップでくるんだのち、オートラジオグラフ用のカセットに2枚のIP-プレートで上下から挟んで圧着してその上からさらに鉛のブロックで荷重をかけて約半年放置した(図1、図4)。荷重をかけるのは、できるだけIP-プレート(イメージングプレート)と死体を密着させるためである。感光後の死体はゲルマニウム半導体で放射能を測定した。

         

  結果が図2、図3、図5、図7、図8である。表1にはヒヨドリ全体の放射能値を示している。血液中に放射能が確実に認められ、表1にはその値も合算して計算している。


 
 
 
 
 
スライド1 


 
 
 図1.ヒヨドリの腹側 胸に穴があいている





  
スライド2 
 
 

 図2.図1のオートラジオグラフ(ポジテイブ画像).傷ついた内蔵が被曝している。眼球や脳も内部被曝している。
 

 
スライド3 
 
 図3.図1のオートラジオグラフ。ネガテイブ画像。
   
   

 
スライド4 
 
 
 図4.胸に穴があいている。その拡大写真。肺か肝臓か?
   

 
 
スライド5 
 
 図5.図3の腹胸部汚染拡大図

 
 
 
 
 
 
スライド6 
 
 図6.ヒヨドリの背側
 
 
 
スライド7 
 
 
 図7.図6のオートラジオグラフ(ポジテイブ画像).右肩に一点ホットパーテイクルが認められる。わずかな外部被曝である。眼球、脳、両脚、左右の背骨筋なども内部汚染している。

 
 
スライド8 

図8.図6のオートラジオグラフ(ネガテイブ画像)。
 
    
       

表1. ヒヨドリの体全体の放射能
 
スライド1
 
(森敏)
付記: 以上のデーターの公開は、群像舎の 岩崎 雅典監督の許可を得ています。
2016-12-15 12:21 | カテゴリ:未分類
 

以前に、原発事故1年後のヒノキの放射能汚染について外部被爆を中心に報告しました。

   2012/05/24 : ヒノキの放射能被爆像

           

 原発事故後5年半以上経った現在のヒノキはどうなっているのでしょうか?
 

       現地で観察すると1本のヒノキのある枝には時々異常な数の種子を付けています(図1)。事故以来あちこちのヒノキをずっと観測しつづけているのですが、その法則性が今ひとつつかめていません。本来栄養組織である葉になるべきものが、発生の途中で何らかのきっかけで分裂異常が起こり、生殖器官である球果になる確率が高まったのではないかと思われます。
 



スライド2 
 
図1.異常な数の球果を付けたヒノキの枝(浪江町大堀地区)

   


     図2をみると、この2つの枝全体には、どこにも外部被爆を思わせる、放射能の黒い斑点がみられないので、このオートグラフの画像は全部内部被爆のセシウムによるものです。つまり原発爆発時に降下したセシウムが付着した樹皮から吸収されたものが、ヒノキの体内のどこかにストックされたものからと、当時土に降下したり、木の地上部全体が放射能によって被曝した、その放射能が、降雨による溶脱や樹幹流やで土に浸透した。そのセシウムが根から吸収されて、この枝にはるばると転流してきたものとしか考えられません。
   


 
スライド3 
 
 
 図2.図1.のオートラジオグラフ(ポジテイブ画像) 球果が強く内部被曝している。球果の中には種子が含まれているのでその放射能も積算されて感光している。(表1.参照ください)

 
 
スライド4 

 
  図3.図1のオートラジオグラフ (ネガテイブ画像)
 
  
  
 
   


表1.図1の植物を解体して部位ごとの放射能の濃度を測定したもの

スライド1    

  この枝全体を細かく解体して、組織ごとの放射能の濃度を測定すると、上記表1のようになりました。放射能濃度の強い順に 球果の殻>新葉>種子>枝>旧葉 となりました。種子の値が結構高いことに驚かされます。ヒノキは旧い葉から枯れていくので、その過程で、旧葉のセシウムがカリウムとともに徐々に枝を通って新葉や種子に転流していると考えられます。(今はやりの「オートファジーという現象」ですね)

     

球果は種子が中で育成されていく容器なので、そこにいったん入ったセシウムは殻を形成して固着して再度動くことはありません。ですので、この殻の部分はセシウムがたまる一方であると考えられます。だから一番放射能濃度が高いのでしょう。一方、種子はセシウムをため込みながら(実際にはカリウムをため込んでいるのですが、セシウムがあるとそれも間違ってため込んでしまうのです)同時に来るべき種子発芽の時の栄養源として、でんぷんやタンパクを合成してため込んでいく必要があるのでので、セシウムの濃度が次第に薄まるものと考えられます。

    

どんどん細胞が分裂と伸張を繰り返して組織を大きくしている新葉もカリウムの要求量が高いので同じ挙動を示すセシウム濃度も高くなっているのです。

   
 
(森敏)

付記:ヒノキの2014年の像については
「放射線像 放射能を可視化する」(皓星社)の92ページ-94ページに載せています。この像では、被曝初期のものであるので、枝の基部の外部被曝が顕著です。 


2016-08-26 11:52 | カテゴリ:未分類

浪江の農業用水路に野生の水生「セリ」が生え始めていたので、長靴で降りて、丁寧に数株を採取した。根は用水路の放射能汚染土壌によって直接外部汚染しても仕方がないけれど、地上部は水にたえず洗われているので、葉は外部被曝はなく内部被爆だけだろうと思って、それを確認したかったからである。

 

セリは水にぬれて新聞紙にびったりとくっついてきれいに葉の形状を保存するための乾燥が難しかったが、何とかやり遂げて(図1)オートラジオグラフを撮像した(図2)。

(図1) ミズセリ(原図)反射しているのはセロテープです。
スライド1

  
 (図2) 図1のミズセリの オートラジオグラフ (上から4分の3が撮像されています)
スライド2

結果は、根に付着した土壌が一番濃く撮っているが、予想外にセリの体のあちこちにも用水路の放射性土壌粉末がこびりついた汚い画像になった。もちろん葉の部分も内部被曝している。新聞紙による乾燥作業中、どうも「乾きにくくて、新聞紙からはがしにくいなー」と思っていたのだが、どうやらセリの葉の表面は粘土などを粘着する分泌物質によって目に見えないくらい薄く覆われているのかもしれない。

 

農業用水には大雨が降ったときに森林の表土や、溜め池などから、いつも細かい泥や砂が流れ込んでいるので、いくら用水の泥を掻き出して除染しても無駄である。これらはいずれ下流の阿武隈川から海に流れ出ているのである。

 

用水の上流の森林を除染しない限り、用水から田圃に汚染土壌が流れ込むので、水田の除染後の用水管理が重要である。過去の鉱山廃液からのカドミウム汚染土壌では、水田の土壌を剥離したあと山土で客土しても、また何十年かのちには、鉱山採掘残土の堆積場などから用水を通じてカドミウムが水田に蓄積していくだろうという確実な試算がある。放射性セシウムの場合でも、たとえイネ(水稲)には吸収されにくい「土壌固着」の放射性セシウムになっていても、水田稲作栽培期間中に農業用水が水口(みなくち)から順次田面に拡散していく過程で放射能が集積していく可能性が高い。福島県や農水省ではこのあたりの長期観測体制はできているのだろうか? 是非モデル圃場を数カ所確保して長期にわたる実証試験をしてほしいものである(ひょっとして、もうしているのかな?)。

    

     

 (森敏)
追記:このセリの根の部分を切りはなして、葉の部分のみを測ったら、以下の放射能値であった。
Cs-134:  25 Bq/kg
Cs-137:  153 Bq/kg
合計:   178 Bq/kg
ということで、食べられない。

2016-08-16 12:32 | カテゴリ:未分類

日本土壌肥料学会2016年度佐賀大会 公開シンポジウム

「事故から5年―農業環境・農作物・農業経済の変遷と課題―」

 

日 時:2016(平成28)年922日(木)13301640

会 場:佐賀大学本庄キャンパスX会場(教養教育大講義室)

主 催:一般社団法人日本土壌肥料学会、日本学術会議 農学委員会土壌科学分科会、農学委員会・食料科学委員会合同IUSS分科会

趣 旨:

  東京電力福島第一原子力発電所の事故によって福島県を中心とする農業は大きな打撃を受けた。事故から5年が経過し、農業環境において様々な放射性物質の低減化対策が検討され、農産物中濃度は基準値を充分に下回るようになった。本シンポジウムでは、5年間にわたり研究が進められてきた農業環境における低減化対策とその効果、農業環境における放射性物質の現状と将来予測、作物摂取による被ばく線量評価、更には原発事故がもたらした農業経済への波及と回復等についてこれまでに取り組んできた専門家に紹介頂き、土壌肥料学会員に広く周知するとともに、一般市民にも公開・普及する。また、今後の課題や営農再開に向けた取り組みなどについて議論する。

 

次 第:

・座長:中尾 淳(京都府立大学大学院生命環境科学研究科助教)

        塚田祥文(福島大学環境放射能研究所副所長、教授)

13:30 開会あいさつ:

         間藤 徹(日本学術会議連携会員、日本土壌肥料学会会長、京都大学大学院農学研究科教授)

13:35 5年間における放射能汚染対策の概要と成果-農地の復興をめざして-」

信濃卓郎(国立研究開発法人農業・食品産業技術総合研究機構 農業放射線研究センター長)

14:05 「果樹における放射性セシウムの動態-果樹園の回復をめざして-」

佐藤守(福島県農業総合センター果樹研究所栽培科専門員)

14:25 「水田における放射性セシウムの動態とモデル化-安全な稲をつくるために-」

江口定夫(国立研究開発法人農業・食品産業技術総合研究機構物質循環研究領域水質影響評価ユニット長)

14:45 「農耕地土壌における放射性セシウムの動態にかかわる有機物の役割-有機物の意外な効果-」

山口紀子(国立研究開発法人農業・食品産業技術総合研究機構有害化学物質研究領域無機化学物質ユニット上級研究員)

14:55 「森林環境における放射性セシウムの分布と挙動-森林・林業の復興にむけての課題-」

金子真司(国立研究開発法人森林総合研究所立地環境研究領域長)

15:15 「福島県における農作物中放射性セシウムとストロンチウム-90濃度および作物摂取による被ばく線量評価-福島県農作物の現状-」

塚田祥文(福島大学環境放射能研究所副所長、教授)

15:35 「原発事故がもたらした農村農業への影響と5 年間の総括-現地の取り組みと復興のいま-」

小山良太(福島大学経済経営学類国際地域経済専攻教授)

16:05 総合討論:

コメンテーター:万福裕造(国立研究開発法人農業・食品産業技術総合研究機構生産体系研究領域バイオマス利用グループ主任研究員)、齋藤雅典(東北大学大学院農学研究科教授)、齋藤 隆(福島県農業総合センター浜地域農業再生研究センター技術研究科主任研究員)、南條正巳*(日本学術会議会員、東北大学大学院農学研究科教授)、木村 武(全国農業協同組合連合会肥料農薬部技術対策課技術主管)

16:40 閉会

 

入場無料

問い合わせ先:佐賀大学農学部 日本土壌肥料学会2016年度佐賀大会運営委員会事務局

                E-mail: jssspn2016@ml.cc.saga-u.ac.jp




  

スライド1
2016-07-27 22:48 | カテゴリ:未分類


biwa komaru_JPG_1024px
 
 
 図1.ビワの小枝のオートラジオグラフ、枝が濃く、新芽が次に濃く、葉が薄く写っている。
  
 
ビワ写真縮小版 

図2.上記の原図 切り離されているのは枝の基部で、べらぼーに高い放射能(表1参照)を示している。

  
  
    

実強拡大のビワの 
図3.図2の新芽の部分を拡大したもの。これがビワの実になる(図4参照)。
    
DSC08305--.jpg 
図4.後日、京都哲学の道に至る道路沿いの民家で撮影した、参考までに琵琶の実のなり方を示した。 
   

  2015年10月に、浪江町の空間線量が毎時10マイクロシーベルトの民家の庭の植え込みにあるビワの木の枝をちょっと失敬してきた(図2、図3)。それを、乾燥してオートラジオグラフに撮像した(図1)。
    

  新芽の部分はビワの実になるべく多数の袋状で黄色であったが(図3)、ここの部分は他の広い葉の部分よりも濃かった。外部被曝ではない。果実に成るべく生殖成長しているこの部分がカリウムの要求性が高いためだと思われる(これまでの研究からいったん体内に取り込まれた放射性セシウムはカリウムと同じ転流の挙動をしている)。枝の部分が汚染が濃いのは2011年に被曝した高濃度の放射性降下物(フォールアウト)が、原発爆発後4年半の雨風に打たれても流れずに付着したまま残っているものである。
     
  このようなオートラジオグラフによる定性的な観察は、表1に示すように、その後部位ごとに分けた放射能測定値(NaIスペクトロメーターによる)によっても、きちんと裏付けられた。ビワの新芽と思われた部分が果実になることは後日民家のビワの写真を撮ったのでご参照ください(図4)。この未熟ビワの実は単純に総放射性セシウムの規制値(100Bq/kg)の139倍もの濃度を示している(水分含量が90%だと仮定しても新鮮重当たりでは13.9倍もある)。

          

   
    
  表1.ビワの放射能(2015.12.13.採取)
ビワの枝葉の放射能(Bq/kg乾物重)
部位Cs-134Cs-137
ビワ新芽
(未熟な実)
2400 11500
ビワの葉17007800
ビワ枝部920043500
   
  
   
    
(森敏)

FC2 Management