2017-03-20 08:02 | カテゴリ:未分類
3月11日と12日に浪江町に調査に入った。以下はその寸景である。



スライド2
 

図1.今はせせらぎが枯れている民家の池に建つビーナス像。 全身に放射能を浴びたまま。津島地区。
 


スライド4 

図2.民家のガラス戸にやるせない怒りと、東電(TEPCO)に対する皮肉の抗議の張り紙。文面を書き写すと以下の内容が読み取れた。津島地区。


今年は梅の花はまだ開花せず

「主なしとて

春を忘れるな」

平成二十四年四月一日  
      一時帰宅

 

 

お盆墓参り
 暮れてなほ

  命のかぎり

   蝉しぐれ

平成二十四年八月十四日

   一時帰宅

TEPCO(東電)のどくろマークの幽霊の絵)

 

 

I Shall Return !!

老兵は死なず。
いつの日か必ず
この地に帰る。
放射能如きに
負けてたまるか。

 平成25年3,3 一時帰宅

 
 

 

今日も暮れゆく

 仮設の村で
友もつらかろ

せつなかろ
いつか帰る日を想い

   一時帰宅

  平成二十五年五月

 

 

二本松八時出発

ここはお国の何十里

離れて遠き二本松

開戦記念 平成二十五年十二月八日 
  一時帰宅

まもなく三年

来年は良い年であるように

 

 

内部被ばくの「ヘビ」

法により食する事を禁ず

     環境(庁)省

(この窓ガラスの内側下に3匹の蛇のおもちゃを設置)

 

 

放射能体験ツアー

大募集中!!

楽しいホットスポット巡り
     東電セシウム観光

 

 

まもなく3

大雪里帰して

帰りたい残念

泣くな嘆くな

男じゃないか 
  平成二十六年三月九日

同行甲田新聞

谷記者隈崎カメラマン

 

 

津島の山も今日かぎり 
国をすて家も
すて、
愛しき皆々様とも

別ればなれとなる

門出だ

 平成二十八年十一日(五年)

 津島の事は次世代べ

 

 

仮設でパソコンできるのも

東電さんの

おかげです

仮設で涙流すのも 
東電さんのおかげです

東電さんありがとう

十二月十二日


     
 
スライド1  

図3.雪解けの春。いのししの足跡。 
   
 
スライド9 

図4.6年間で一面に繁茂した牧草地の「おのえやなぎ」の冬枯れのすがた。除染企画書どおりに、道路肩から20メートルだけ切り倒した跡 
    

   

スライド7 

図5.イノシシが跋扈して掘り繰り返した厩舎横の牧草地  
    
 
 
スライド2 

図6.放置された厩舎。 右上の添付のかこい写真は温度計。正常に室温7度を示していた。


   
スライド8 

図7.なぜかマツの木のみが倒れて散乱している。放射能の空間線量は毎時9.5マイクロシーベルト。
放射能雲(プルーム)はこの山にもろにぶつかったと思われる(小丸地区)

    

 
 
スライド3

図8.静謐な濃紺の水をたたえた大柿ダムの湖面。道路橋から望む。向こうの湖畔中央部に白馬がいれば、まさに東山魁夷の日本画の世界。手前の湖底は沈下橋。湖岸は毎時2.7~5マイクロシーベルト。 
  

 
スライド10 
 
図9.道路の暖かい南斜面に、早くも咲き始めたフキノトウ。春はすぐそこだが。。。。。地表面は毎時8マイクロシーベルト。
  
  
  
    
(森敏)
 
追記:読者から図7について、なぜマツがやられているのかについて、
  
「放射性物質が大木を枯らすというのは大変なことだと思います。どのようなメカニズムが考えられるでしょうか。」
というご質問をいただきました。
   
この点に関しては、ずっと小生も疑問を抱いてきたところです。これまでも以下のブログでいくつかの現象的な事例を枚挙してきました。
   
日本のガンマフィールドの研究者からマツは、ほかの木本よりも細胞の核が大きいので染色体が放射線によるダメージをうける確率が高いという説が有力なようです。
    
放射線影響を否定したがる研究者からは、マツノザイセンチュウの影響だろうという反論がいつも直ちに出されます。
放射線で細胞が弱体化して環境ストレスに対して抵抗力が低下しており、マツノザイセンチュウにやられやすくなっており、このセンチュウの寄生によって、導管がふさがれて、水分の吸い上げができなくなり頂点から枯れていく、最後に倒木する、という流れも否定できません。しかし林業研究者で放射線量が高い場所で、松の倒木が集団で起こっているところのマツのセンチュウやその媒介昆虫の生息数を数えるような、奇特な研究者はいないようです。
    
なお、倒木前のマツは概して多くの松かさをつけるようです。擬人的に考えれば、枯死する前に急いで子孫を残そうとしている適応現象なのかもしれません。
  



2017-02-17 08:06 | カテゴリ:未分類

民家の庭先にショウブとハスを混食しているプラスチックバットがおいてあった。きっと避難している家主は水生植物の愛好家だったのだろう。これまでも溜め池などでは、岸から離れているハスなどの水生植物を採取するのが少しややこしかったので、このプラスチック箱の中から紫色の2本を茎の部分から上を失敬した。葉は全面的に水につかっていた(図1

       

新聞紙で乾燥するとさらに紫色が強くなった(図2)。研究室に持ち帰ってガイガーカウンターを当てると1600 cpmと、とてつもなく高い値を示した。以下の動画を見てください。
 https://vimeo.com/190422228 

         
  それをオートグラフに取ったのが図3(ポジテイブ画像)と図4(ネガテイブ画像)である。ハスの葉脈が子細にくっきりと浮かび上がっているのがわかる。
    
  この植物体を葉と茎にわけて放射能測定したものが表1である。茎と葉は共に、Cs-134 と Cs-137の合量で数十万ベクレルとべらぼうな値であることがわかる。


スライド4 
 図1.民家の庭に放置されたハスを育てているプラスチックバット
 
 
 
スライド1 
 
 図2. ハスをサンプリングして押し葉にしたらこんな紫色になった。

 
 
 
 
スライド2 
 
 
 
 
 図3.図2のオートラジオグラフ
スライド3 
 

 図4.図3のネガテイブ画像



 
表1.ハスの放射能
スライド2 
 

なぜこんなに高いのだろうか? 以下に若干考察してみた。

       

第一にこの地域に降り注いだ総放射線量がべらぼうに高かったであろう。今でも空間線量は8マイクロシーベルト付近である。しかしそれ以外に、第二に、原発事故以来このプラスチックの箱に降り注いだ放射能は箱の外には逃げないで箱のなかに留まったままであるはずだ。土壌は箱の底に数センチである。いつも土壌表面は水で空気から遮断されているので還元状態にある。たぶんそういう環境下ではセシウムは土壌への吸着が進みにくく、いわば箱の中で放射性セシウムは水の中でリサイクルし続けていると思われる。冬になって葉が枯れて腐ると、微生物菌体のコロイド状になり、そのコロイド状の有機性セシウムは、また次の春になると無機セシウムイオンとして遊離されてハスの根からばかりでなく葉からも再吸収されるわけである。

     

フキノトウなどでは、淡水状態で出てくるフキノトウと陸生のフキノトウでは前者の方が遙かにセシウム汚染が強いことがすでに明らかにされている。これは淡水状態では水につかっている地上部分からも容易に放射性セシウムが吸収されるからである。

      

水稲の場合も、水を張った出穂期に森林で汚染した沢水がかかると、容易に茎からセシウムを吸収して、お米の放射性セシウム含量がたかまるので、要注意なのである。小生自身が実験したわけではないが、カリウムを農水省が定める基準値量(25mgK2O/100g土壌)以上施肥していてもこの経茎吸収は押さえられないと思われる。

      

たかがハス、されどハス。 原発事故後ほぼ6年になるが、放射能汚染地での自然観察で学ぶことはまだまだ多いのである。

  
   
(森敏・加賀谷雅道)

     
 
 
 
 

2017-02-05 05:41 | カテゴリ:未分類

昨年夏に福島県浪江町で車を転がしていると、道路脇に低木の新鮮な若木がはえていたので、何気なくサンプリングして、大学に持ち帰った。サーベイメーターで測ると、葉の部分が異常に高い放射能値(660 cpm) を示した。葉の部分がこんなに高い内部被曝の植物はこれまで検知したことがなかったので、これは外部被曝のせいかな?と思った (図1,図2.)。

  

そこで押し葉にしたら、葉は実にペラペラの半透明で薄い紙のようになった。だからオートラジオグラフを撮ると実に鮮明な像がとれた。(図3,図4)。枝分かれしたどの葉も葉脈が明快にわかり、葉脈間もほぼ均一に内部被曝していることがわかる。外部被曝は全くない。

     

  木本(もくほん)で地上部がこんなに放射能が高いのはこれまで経験がない。あまり気にしていなかったのだが、この植物が生えていた土壌が腐葉土で可溶性の放射性セシウムを大量に含んでいたのかもしれない。あるいは、この植物の根のカリウムイオン・トランスポーター(膜輸送体)がかなり特異的にセシウムイオンも吸収するトランスポーターなのかもしれない。セシウムイオンの濃度を調べる必要が出てきた。この植物は意外にセシウムを濃縮する植物なのかもしれない。

 

  この植物の名前が長い間わからなかったのだが専門家に同定してもらったところ「ミツバウツギ」ということである。
     
  表1でもわかるように、この植物の葉や茎はとてつもなく高い放射線量で被曝をしていることがわかる。繰り返すが、図3,図4でわかるようにこの植物は全く外部被曝に特徴的なホットパーテイクルが見られない、すなわち全部腐葉土から放射能を吸収したものである。

      

 

 

 





ミツバウツギ低木jpeg 
 図1.ミツバウツギ。光っているのはセロテープ。
 
       
 
 
スライド1 
 図2 ミツバウツギ 黄色のメモ用紙にガイガーカウンターでの測定値(cpm:1分間計数値)がかかれている。
 
     
    
 
スライド2 
図3.図2のオートラジオブラフ(ポジテイブ画像)放射能がどの葉にも均一に分布していることがわかる。全部内部被曝である。

 




 
スライド3 
図4。図3のネガテイブ画像 中心部の茎の分かれ目が強く感光しているのは、いつも説明していますが,ここは導管と師管が複雑に入り乱れている部分なので放射能の滞留量が多いからなのです。
  

  

       

表1 ミツバウツギの放射能 


ミツバウツギの放射能jpeg 
(森敏)
謝辞: ミツバウツギは若林芳樹(株アスコット)氏による同定です。ありがとうございました!

2017-01-04 11:50 | カテゴリ:未分類
スライド2 


図1。直径10センチのキノコ。山土が砂質土壌で、ミネラルの吸着力が低いと思われる。地表面の放射線量は 毎時7.79マイクロシーベルト(ビニールが反射して見にくいですが)。 津島高校分校校庭にて。

 

 

キノコは放射性セシウムの吸収蓄積能力が高いので、いまでも福島とその隣県の自治体では野生のキノコは100ベクレル/kg新鮮重 以上のものが検出され続けており、販売は禁止されている。(付記1)

    

チェリノブイリ原発事故以降の文献でもヨーロッパばかりでなく、その後25年経った日本でもCs-137が有意に100ベクレル/kg新鮮重 を越えるものが、今回の福島原発事故が起こる以前にもあった。このようにキノコの自然環境の中でのセシウム吸収力はしぶといのである。

      

その一方では、放射性セシウム吸収力の強いキノコは原発事故由来の放射性銀(Ag-110m)の吸収力も強いことがチェリノブイリ以降の文献でもいくつか実証されている。(付記2)

        

小生らは、ずっと昆虫を中心に放射性銀(Ag-110m)の動向を追跡調査している。(付記3)

2016年には、ジョロウグモ以外のほとんどの昆虫では、放射性銀(Ag-110m)は消滅している。それは物理的な半減期減衰によるものと、銀の土壌への吸着不溶化によるものである。(付記3)

        

しかし、昨年2カ所でサルの糞を偶然採取したのでそれを測定したら、いずれも放射性銀(Ag-110m)を含んでいた。いったいサルは何を食べているからその糞に放射性銀が多いんだろうか?と、ずっと疑問に思っていた。
        
スライド1 
図2. サルの糞を乾燥させたもの (加賀谷雅道カメラマン提供)(表1 サルの糞 昼曽根 に対応)
 
スライド1 
 図3. 上:図2のオートラジオグラフ(ポジテイブ画像)。下:図2のネガテイブ画像
               
        最近浪江地区の松を採取した津島高校分校のグランドにあちこちはえている大きなキノコ〔図1〕を2日間にわたってゲルマニウム半導体で測定したら、わずかであるが放射性銀(Ag-110m) が検出された (表1。最下段の赤字)

               

  そこで思うのだが、猿は無意識にビタミンDの供給源としてキノコを大量に食べるのではないだろうか?(猿のクル病って聞いたいたことがないですよね。) しかしサルは消化しきれなくて繊維質を大部分排泄する。そのとき不要な放射性銀(Ag-110m)も吸収されずに濃縮されて排泄されるのではないだろうか? 図3の上下のオートラジオグラフを見ると、サルの糞 (表1 サルの糞 昼曽根 に対応)の中にはいくつかの際だって放射能が強いたべものの残査があることがわかる。これが野生のキノコかもしれない。
                   
       一度、いたずらに、どこかの動物園でサルにキノコを投げて、嗜好性を見てみようと思う。
       
      
         
      表1.各所のサルの糞とキノコの放射能 
糞とキノコjpeg 

     
(森敏)
           
    

(付記1)2013/11/23 : 放射能汚染キノコ2態 (クリックしてください)

(付記2)それはおそらくキノコの持つカリウムトランスポーターのどれかがごく微量のセシウムも吸収するためであるとおもわれる。(ただし、キノコからこの特異的な高親和性のカリウムトランスポーターをクローニングしたという例は小生は知らない)

(付記3)Hiromi Nakanishi et al . Proceedings of Japan Academy  Ser. B 91 (2015)160-174
      

 

 

2016-12-08 14:14 | カテゴリ:未分類
  小生は年のせいで(:今年末から後期高齢者なかまに突入した)、放射能汚染現地調査の途中では、結構頻繁に水分を補給している。そうしないと、足の筋肉への血流が悪くなるためか、時々足がしびれるからである。だから、必然的に頻繁に尿意をもようすので、自動車を降りて道ばたから少し林内に入って、尾籠(びろう)な話で恐縮だが、立ちションベンをする羽目になる。そのときは、必然的にあたりの植生をじっと眺めることになる。もちろんかなりの放射能を浴びながら。そういうときにも結構あたらしい発見がある。
  
     
       飯舘村の 「あいの沢」 は、本来はキャンプ場であったのだが、いまは人っ子一人いない。昨年夏にここでやっと除染作業が行われた。除染といっても道路と道の両側の20メートル幅の山林の下草や土を深さ15センチばかりをとりのぞくのだから、どうしても地下茎で連なっている一部のシダ類などは、のぞき切れていない所がある。そこまで徹底的にやると作業に時間がかかって、だから除染作業員の労賃がかかるので、しかたがないからだろう。一応地表面が毎時0.23マイクロシーベルトにまで低下することを目指しているようではあるが。
  
  昨年の春、例によって小便をすべく林内に入った。数メートル入った林の中の空間線量は毎時4.5マイクロシーベルトであった。そこでは芽を出し始めたばかりの丈の低いワラビが群生していた。
      
  ワラビのいくつかを根から切り取って研究室に持ち帰って、ガイガーカウンターで測定してみると、意外に葉のベータ放射線量が高いので、それをオートラジオグラフに取ってみた(図2)。また、組織を各部位にわけて放射能を測定した(表1)。
 

 
スライド4 
 
 図1.春先の若いワラビの写真

 
スライド5 
図2.図1の若いワラビのオートラジオグラフ
   
 
 


  表1 ワラビの各部位の放射能(ベクレル/Kg乾物重)
 ワラビjpeg  



       図2で定性的に,表1で定量的に明らかなように、シダも未展開葉では若干放射性セシウム含量が高い。しかし、次の図3のように葉が全面展開したものでは、図4、図5で見るように、枝の最先端の葉は少し他より放射能が高いようだが(図5のネガテイブ画像で特に理解されると思う)、比較的放射能は全葉に均一に分布しているように見える。また、一見、左側の茎のみの部分が強く感光しているように見えるが、これは茎が葉に比べて数倍の厚みがあるので、放射能が重なって感光しているためである。


  
 
スライド1 
 図3.浪江町で採取したシダ
 
スライド2 
 
 図4.図3のシダのオートラジオグラフ ポジ画像
 
 
スライド3 
 図5.図3のートラジオグラフ。ネガ画像
 
 
  
地下茎の多年生のシダ類(ワラビはシダ類の一種)はタケノコと同じように地下系が土壌の表層直下数センチあたりを縦横にうねっていて、根がそのあたりまでに大部分が集積している「土壌の可給態の放射能」を吸収して地下系を通じてあちこちの新芽に直ちに分配輸送されるので、いつまでも地上部の放射能が高く推移する可能性が高いのである。


  

 
(森敏)
 
付記1:タケノコについては以下のブログを参照ください。
 
 2016/05/20 :
まだタケノコは要警戒: 給食のタケノコご飯から基準超のセシウム

 
付記2:シダ類の同定には 「フィールド版 写真でわかるシダ図鑑  池田怜伸 著」 トンボ出版 を参考にした。


 
 
 
  
FC2 Management