2017-06-19 08:41 | カテゴリ:未分類
  先日漫然とテレビを見ていたら 「震災の歌に刻む六年」(NHK Eテレ)という番組があり、ここで選ばれた番組最後の歌に以下のものが紹介された。少し感動したので素早くメモした。それを作者に無断で紹介させていただくと、
  

  
       

安全の

証(あかし)などなし

原発の

世を生きゆかむ

孫らを思ふ

      杉本慧美子


(震災の歌に刻む六年:NHK Eテレ 2017。6。15 より)


というものであった。

      
以下はこの詠歌に関連した最新の科学論文の紹介です。
  
               
  実はちょうどこの日に Scientific report に掲載された以下の、胎児の成長に関する論文を読んだばかりであった。

   
   
(そこで、これから先は少し論文調になりますが、少し詳しくこの論文を紹介します。我慢して読んでください。)
   
この英文表題は

                     
Small head size and delayed body weight growth in wild Japanese monkey fetuses after the Fukushima Daiichi nuclear disaster
Scientific Reports 7, Article number: 3528 (2017)

doi:10.1038/s41598-017-03866-8
https://www.nature.com/articles/s41598-017-03866-8

         
  そこでこの英文表題を直訳すると、

「福島第一原発事故後の野生のニホンザルの胎児の小頭と鈍化した体重」
     

という衝撃的なものです。その論文の「要旨」(付記参照)を小生が勝手に日本語に直訳すると、以下のような内容です。
            
   
要旨     
「東電福島第一原発事故の影響を評価するために、原発から約80km離れた福島市に生息する野生のニホンザル(Macaca fuscata)について、2011年の事故の前後である2008年から2016年までに捕獲した母ザルの体内の胎児にいて、その外形的計測を行い、相対的な成長の違いについて調べた。事故前の31頭と事故後の31頭のニホンザルの胎児について体重や、頭のサイズ(前頭から後頭への直径と二頭頂骨の直径)の
     頭頂から臀部までの長さに対する比 を調べたところ、体重と、それに対応した頭のサイズは事故後の胎児では事故前に比べて、有意に低下していた。胎児の母親の栄養学的な指標に関しては事故前後で有意な差がなかった。したがって、放射線被ばくが、観測された胎児の成長遅延の一因子でありうると考えられた。」
                           
  
参考のためにこの論文に添えられた図表の一部を勝手に解釈して分かりやすく(したつもりで)紹介すると以下のようです。
                   


表1.母ザルが生息する地域の5年間にわたる累積空間放射線量(一番右の赤字データ)
羽山論文図2 jpeg 

      

                

 表2 2011年の事故後に各年に 捕獲した妊娠母ザルの筋肉の放射性セシウム量

羽山論文図jpeg-2   
    
   
    

    

 

スライド2 
  
    

図1.横軸のCRLとは頭頂から臀部までの長さ(CRL:crown-rump length = the length of the fetus from the top of  fetus head to bottom to torso)の事です。縦軸は頭のサイズ(面積)です。赤三角が東電福島第一原発事故後の胎児、青三角が事故前の胎児。全体として赤三角が下方にシフトしていることがわかります。

   

    

 
   
 

    

スライド1 
   
    

図2.図1と同じく、横軸のCRLとは頭頂から臀部までの長さ(CRL:crown-rump length=the length of the fetus from the top of  fetus head to bottom to torso)の事です。縦軸は体重です。赤三角が東電福島第一原発事故後の胎児、青三角が事故前の胎児。全体として赤三角が下方にシフトしていることがわかります。

   
       
       
     

  結論としてこの論文では、体重/CRL(図2)や頭頂面積/CRL(図1)が、胎児の体内での成長速度の指標になるという獣医学上の定義(常識)を前提として、東電福島第一原発の事故後に、母親の胎内の胎児の成長が鈍化していることを述べています。放射線障害に関しては、成人や小児の白血病などの癌や、新生児の奇形など、遺伝子変異による影響に注目するばかりではなく、母体内で胎児がどういう成長を遂げているか、などのここで述べられている視点は非常に重要です。
             
  現在、福島県の各市町村では年間被ばく線量の上限が年間20ミリシーベルトという途方もなく高い基準を設けて、避難区域を解除しました。そんなところに、これから子供を産もうとする夫婦も帰還するべきだろうか? この論文でニホンザルが野生環境の中で先行して示している ”母体内での胎児生長の鈍化 という危険なシグナルに、人間は謙虚に学ぶべきでしょう。医学生理学的には帰還してあえて人体実験に加わる必要などは全くないと思います。

  
   
    
       
(森敏)

付記:念のため abstract の原文は以下のとおりです。

To evaluate the biological effect of the Fukushima Daiichi nuclear disaster, relative differences in the growth of wild Japanese monkeys (Macaca fuscata) were measured before and after the disaster of 2011 in Fukushima City, which is approximately 70 km from the nuclear power plant, by performing external measurements on fetuses collected from 2008 to 2016. Comparing the relative growth of 31 fetuses conceived prior to the disaster and 31 fetuses conceived after the disaster in terms of body weight and head size (product of the occipital frontal diameter and biparietal diameter) to crown-rump length ratio revealed that body weight growth rate and proportional head size were significantly lower in fetuses conceived after the disaster. No significant difference was observed in nutritional indicators for the fetuses’ mothers. Accordingly, radiation exposure could be one factor contributed to the observed growth delay in this study.



2017-06-06 09:08 | カテゴリ:未分類
   
今回は少し難解ですが重要な発明ですので、どうか我慢して読んであげてください。
   
以下農研機構のホームページからの転載です
 
放射性セシウムを吸収しにくい水稲の開発に成功

- コメの放射性セシウム低減対策の新戦力 -

情報公開日:2017年5月31日 (水曜日)

農研機構
岩手生物工学研究センター


  1. 農地土壌から作物への放射性セシウムの移行を低減するために、水稲では、カリ肥料の増肥が効果的な対策として実施されています。一方、長期にわたって、省力的かつ低コストで行える新たな低減対策も生産現場から求められています。
  2. そこで農研機構は、イオンビーム照射による突然変異法により、放射性セシウムを吸収しにくいコシヒカリ(Cs低吸収コシヒカリ)を開発しました。Cs低吸収コシヒカリを、放射性セシウムを含む水田で栽培した場合、コメの放射性セシウム濃度はコシヒカリの半分に減少しました。
  3. Cs低吸収コシヒカリにおいて、コメの放射性セシウム濃度が低下したキー(鍵)となる遺伝子を岩手生物工学研究センターとの共同研究で特定しました。この遺伝子は、イネ根のナトリウム排出に関与するタンパク質リン酸化酵素遺伝子(OsSOS2;オーエスエスオーエスツー)が変異したものです。この変異が原因で、Cs低吸収コシヒカリは根のセシウム吸収がコシヒカリに比べて、抑制されていました。
  4. Cs低吸収コシヒカリの生育特性や収量はコシヒカリとほぼ同等で、コシヒカリと同じ方法で栽培できます。また食味もコシヒカリとほぼ同等です。
  5. セシウム吸収を抑制する遺伝子(OsSOS2の変異)を簡易に検出できるDNAマーカーを開発しました。このDNAマーカーの活用により、コシヒカリ以外の品種にも放射性セシウムを吸収しにくい性質を効率良く付与することができます。
  6. 本成果は英国科学雑誌「Scientific Reports」(2017年5月25日発行)のオンライン版に掲載されました。
        
      低Csイネjpeg

      


ホームページは

http://www.naro.affrc.go.jp/publicity_report/press/laboratory/niaes/075645.html



投稿原著論文は
Satoru Ishikawa, Shimpei Hayashi, Tadashi Abe, Masato Igura, Masato Kuramata, Hachidai Tanikawa, Manaka Iino, Takashi Saito, Yuji Ono, Tetsuya Ishikawa, Shigeto Fujimura, Akitoshi Goto & Hiroki Takagi (2017) Low-cesium rice: mutation in OsSOS2 reduces radiocesium in rice grains. Scientific Reports, 7, 2432.
doi:10.1038/s41598-017-02243-9


(森敏)


付記1:

この研究は福島第一原発事故後の2年後ぐらいから農研機構の石川覚グループで行われていたもので、まさに画期的な成果です。小生は福島第一原発事故後の学術会議主催のシンポジウムで2回にわたって水稲根のセシウムの細胞内への膜輸送にはカリウムのトランスポーターが使われている可能性が高いので、カリウムのトランスポーターが働かなくなったイネの量子ビーム変異株をスクリーニングして低セシウム吸収イネを作出すべきことを提案していました。当初は皆さん「またモリビンがほらを吹いている」という冷たい雰囲気でしたが、日本土壌肥料学会では、その後石川覚グループが量子ビーム育種で、秋田県立大では頼泰樹グループが変異原(アジ化ナトリウムやMNU)を用いてスクリーニングを行って該当遺伝子を同定しています(これらの遺伝子破壊株はカドミウムの場合のようにほぼ100%セシウムを吸収抑制するわけではないということですが)。今回の農研グループの成果はカリウムトランスポーターの破壊株に関する発表ではないですが、先駆的な新種の発明であることは間違いありません。今後、カリウムトランスポーターであるHAKやAKT1などの破壊株の低セシウムコシヒカリの発表が続くものと大いに期待されます。(森敏 記)

 

付記2:

小生は今回の福島第一原発事故後の研究者の在り方として、単にチェリノブイリ原発事故で世界の研究者が明らかにしてきた事の追試的な研究ばかりでなく、サイエンスとして新しい観点からの発明や発見があるべきだとずっと主張し続けてきました。今回の農研機構・岩手生物工学センター・福島県農業総合センターの共同研究の成果は、まさに小生の提案に沿う成果であり、高く評価したいと思います。
 
付記3:過去の農研機構・東大との共同研究による「量子ビーム変異を用いた低カドミウム米の開発に成功」は以下のWINEPホームページとWINEPブログを参照ください。

  WINEPホームページ: http://www.winep.jp/news/153.html

  WINEPブログ:2014/05/14 : 中国の広大なカドミウム汚染土壌に、日本の無・カドミウム米「コシヒカリ環1号」を


2017-05-06 07:05 | カテゴリ:未分類

  昨年の春、浪江町の竹藪でタケノコ(まだけ:真竹)を採取して、オートラジオグラフを撮りました(図1、図2、図3)

  皮の重なりが少ない底辺部分は可食部の節目が放射能が高く、透けて写っていることがわかります。

  皮を一枚ずつめくって、いくつかまとめて測定しました。食べる肉質の部分も測りました(表1)。

  皮は下から上に向かって高くなっている傾向があることがわかります。

  可食部肉質の部分もまだ結構高いです。

  これらの放射性セシウムはタケノコの根部に蓄えらえた放射性セシウムが春になって新芽であるタケノコに転流しているか、5年たってすでに倒れたタケノコの樹や葉が腐食し始めたりしてセシウムが溶け出してきて、それをタケノコの根から吸収した結果と思われます。

これらの結果はすでに以前に以下に論文にしたものと同じです。
   
  

Radioactive cesium distribution in bamboo [Phyllostachys reticulata(Rupr) K. Koch] shoots after the TEPCO Fukushima DaiichiNuclear Power Plant disaster

Hiromi NAKANISHI, Houdo TANAKA, Kouki TAKEDA, Keitaro TANOI,

Atsushi HIROSE, Seiji NAGASAKA, Takashi YAMAKAWA and Satoshi MORI

Soil Science and Plant Nutrition (2014) 60, 801-808

 

 



 
スライド1 
 
 
 
 
スライド2 
図2.図1のオートラジオグラフ 皮の部分が少し汚染土塊をくっつけている。

 
 
スライド3 
図3.図2のネガティブ画像。上部の細かな点々は産毛の放射能が高いためと思われる。
タケノコはここから水分が蒸散しており、セシウムが濃縮されているのかもしれない。
早朝に竹やぶでタケノコを観察すればここに案外水滴がたまっているのかも。

 
   
  
 
 表1.真竹の放射能 (:Bq/kg乾物重)

真竹jpeg


  

(森敏)

付記:以下の以前のWINEPブログ記事もご参照ください。

2017-03-26 21:56 | カテゴリ:未分類
原発事故で住民が避難したあとの民家の庭には、観賞用の草花の種が毎年稔っては散り、稔っては散り、雑草も交えていろいろな草花が繁茂している。その内の一つにコスモスがある(図1)。

 

       コスモスを刈り取ってきて、放射能を測ってみると、意外に花の部分にも強い放射能が検出された。そこでオートラジオグラフをとってみたら、見事に全身の放射能が撮像された(図2,図3)。コスモスの葉の幅はわずか2-3ミリと細いのだが、くっきりと写しだされた。
 
スライド1 
図1.民家の庭のコスモス 黄色い紙の上はこぼれ落ちたコスモスの種をセロテープに貼り付けたもの

 

       スライド1 
 
 
   
 
図2.図1のオートラジオグラフ。
赤丸内部は、落ちこぼれた種子をかき集めてセロテープに貼り付けたもの。

  
    
  

  
スライド2 
 
図3.コスモスのオートラジオブラフ。図1のネガテイブ像
 

 
 

 
 
表1。コスモスの部位別放射能濃度 
コスモス放射能jpeg  

 
   
  少し細かく組織をわけて放射能を測定したら、細い葉が一番強く汚染しているのだが、種子も茎と同ていどに高濃度に汚染されていた。図2や図3で、どの株も花の部分が強く汚染しているように見えるのは、花器には種子がごっちょりとついて放射線(ベータ線)が重なって撮像されているからである。図2と図3の左下に赤丸で囲んでいるのは、一つ一つの種子である。これら一粒ずつがくっきりと感光していることがわかる。つまり、これまでもこのWINEPぶろぐでも幾度となく述べてきたように、セシウムは次世代に移行する。
 
       現在 住民が避難して居ないので、コスモスは原発事故以来毎年タネを付けてはそれを周辺土壌に落下させて、また翌年に発芽させてきたことになる。コスモスは栽培種であるので、根からの養分吸収力(吸肥力)がつよく、根が浅いので絶えず表層の放射能汚染土壌から放射性セシウムを容易に吸収してきたものと思われる。避難する前の住民がカリを含む肥料をこの庭土に撒いていたとしても、5年間もこの庭で草花が生々流転(吸収枯死分解)を繰り返せば、すでにカリの効果も少なくなって野生に近い土壌条件になってきているのだろう。
 
 子細に見ればコスモスはいろいろ形態的な変異を起こしているに違いないのだが、いかんせん普段の正常な姿が小生の頭にはないので、異常かどうかがわからないのが、我ながら情けない。

 
       
(森敏)

2017-03-10 08:27 | カテゴリ:未分類

まもなく2011年3月12-20日の福島第一原発事故後6年めとなる。以下の文章は少し硬い論文調ですが、吟味してください。 
       
       

原発事故で帰還困難区域の山林は、住民が入らなくなったので、樹木が間伐されない。なので、荒れ放題である。木々にツタが絡まり、場所によっては特に巨木のマツの枯死や倒木も始まっている。
    
  スギやマツでは「こぶ」(クラウンゴール)ができて、枝が枯れているのが目に付く。これらは原発事故前からもあったのだろうが、被害は拡大しているのではないだろうか(図1、図9)。「
スギこぶ病」は,子のう菌(Nitschkia tuberculifera KUSANO)の一種が引き起こすスギの病害で,これに罹病すると,枝や葉,場合によっては幹に大小のこぶが生じ,樹勢が衰え,枯死にいたることもあるといわれている。

      

  2015年までは、この「スギこぶ」は球状の立体的なものなので(図2、図3)、感光面が平面のIP-プレートでの放射線像の撮像がむつかしいのではないかと思って、小生はあまり採取に熱心ではなかった。しかし、大学に持ち帰って放射能を測定してみると、飯舘村のものや浪江町のものはとてつもない値が出た。表1には浪江町の山林で採取したスギこぶを示している。総じてキログラム当たり15~20万ベクレルを示し、樹皮よりも高い放射能値である。

    

これは放射性プルーム(雲)による被爆当初に、直ちに被爆樹皮から「スギこぶ」に取り込まれた放射能が植物細胞よりもはるかに代謝活性の強い「杉こぶ」の菌体に積極的に取り込まれたからではないかと思われる。また、生体高分子樹脂で「スギこぶ」の表面は子細に入り組んだ凸凹になっており(図3)、いったんそこに入り込んだ放射能は樹脂と結合して抜け出られないものと思われる(図5、図6、図7)。

 

立体的なまま放射線像をとるとスギこぶとIP-プレートが密着していないので、放射線が立体角4πの方向にあちこちに飛んで、ぼけたイメージで感光した(図4)。実際の森林では、この「スギこぶ」からこのように放射線が発散しているわけである。
 
      スギこぶ菌にやられた杉は、結局倒木して、急速にシロアリなどの小動物に食べられて、土壌中に有機物として帰っていく。放射性セシウムも同じ運命をたどり、森林生態系の元素循環の中に繰り込まれていく。

 

スライド3 
図1.「杉こぶ」。枝は枯死し始めている。




 
スライド1 
 
図2.「杉こぶ」。実験室に持ち帰った「杉こぶ」がついた枝。枝はまだ生きている。


 


スギこぶ拡大図jpeg 

図3.図2の一つの「杉こぶ」の拡大図




 
スライド2 
 
図4.図2を立体のままIP-プレートで感光したもの。放射線が四方に飛び交っているので像がぼけている。


スライド1 
図5.「杉こぶ」をのこぎりで2つに切断したものを対称形に開いて並べたもの。撮像するときに角度が少しずれたのだが、右のものを少し右下がりにすると両者が合体するいめーじになる。上のオートラジオグラフが下の杉こぶのサンプルに対応している。

 

 
スライド3 
 
図6.図4の左のサンプルの拡大図 。白い感光していない部分はpith(木髄)





スライド4 
図7.図4の右のサンプルの拡大図。
白い感光していない部分はpith(木髄)


 
 
 



スライド1 

図8.「杉こぶ」の断面解剖図 (文献 J.Jpn.For.Soc. 68(11) '86 からの引用 )


 


スライド2 
 
表1.上のゲルマニウム半導体用の容器(U-8)に入っている「杉こぶ」に対応する放射能の測定値。 
スギこぶ1-1と1-2は半切の対になっているそれぞれ一方の測定値。
スギこぶ2-1と2ー2は半切の対になっているそれぞれ一方の測定値。
スギこぶ3-1,2,3は3個の小さな杉こぶの合量。


    
(森敏)
 
付記1:以下の写真に見るように、飯舘村での激甚な杉こぶ被害の、迫力ある写真は、以前に「中部支援ネットワーク」から小生にも送られてきたことがある。ここに無断で掲載させていただきました。

 
スライド1


図9.飯舘村での被害が激甚な杉の「杉こぶ」。枝の先端のみに葉が茂っている。大方の栄養分を「杉こぶ」に収奪されているのだろう。
 
追記1:以下の図10、図11は図6と図7に対応するネガテイブ画像です。こちらのほうが放射能汚染の度合いがわかりやすいかもしれません(白い部分が放射能の局在部位です)
 
スライド1 
図10.図6のネガテイブ画像。白い部分が放射能汚染部位。白が鮮明なほど汚染が激しいことを意味している。
 
 
スライド2 
図11.図7のネガテイブ画像。白い部分が放射能汚染部位。白が鮮明なほど汚染が激しいことを意味している。

    

FC2 Management