2017-05-20 15:37 | カテゴリ:未分類
   一昨年の秋、いつものように小生は運転手が仮眠する間に次々と道路端の植物をサンプリングしたのだが、地面を這っているカキドオシは全面的に、土ぼこりで放射能汚染していた(図1、図2、図3)。小さな根の部分はほとんどが汚染土壌の放射能と思われる(表1)。 

 
 

 
スライド1 
図1.カキドオシ (浪江町津島地区にて)
 
 
 
 
 
  
 
 
 
 
スライド2 
図2.カキドオシの放射能汚染。 オートラジオグラフ外部被ばくが強い。ツルの先端の新芽は内部被ばくが強そう。
 
 



 
スライド3 
図3. 図2のネガティブ画像 右中央部の濃い部分は分岐根。
 
   
    
 
表1.カキドオシの放射能

カキドオシjpeg 

 
  

(森敏)
 
 
 




 

 
 
 
 


 
 
 
 




 
 
2017-04-16 14:09 | カテゴリ:未分類


山菜採りでびっくり、四つ子のフキノトウ発見

20170409 1315(読売新聞)
新しい画像

四つのフキノトウが出た株

   
四つ子のフキノトウ
――

 山菜シーズンが本格化する中、新潟県新発田市のパート従業員の女性(66)が、四つのフキノトウが出た株を見つけた。

 女性は3日、同市上荒沢地区で兄と山菜採りをした。フキノトウを持ち帰って天ぷらにしようとした際に見つけ、「びっくりした」と話す。

 県立植物園(新潟市秋葉区)によると、越冬時の芽に傷がつくなどすると、複数の花序(花の集まり)ができることがあるという。
ーーーーーー

この記事を見て、小生は現地でこれまでフキノトウをよく観察してこなかったことに気付かされた。
フキの新芽も土から発芽して外に出るまでの期間には相当量の積算放射能を放射能汚染土壌から浴びるはずだ。よくみればこの報道にあるような奇形の新芽が、激甚な汚染土壌地ではあちこちで観察されるのかもしれない。今度訪れたらよく調べてみよう。これまでは見れども見えずだったようだ。
     
(森敏)

 

 

2017-03-26 21:56 | カテゴリ:未分類
原発事故で住民が避難したあとの民家の庭には、観賞用の草花の種が毎年稔っては散り、稔っては散り、雑草も交えていろいろな草花が繁茂している。その内の一つにコスモスがある(図1)。

 

       コスモスを刈り取ってきて、放射能を測ってみると、意外に花の部分にも強い放射能が検出された。そこでオートラジオグラフをとってみたら、見事に全身の放射能が撮像された(図2,図3)。コスモスの葉の幅はわずか2-3ミリと細いのだが、くっきりと写しだされた。
 
スライド1 
図1.民家の庭のコスモス 黄色い紙の上はこぼれ落ちたコスモスの種をセロテープに貼り付けたもの

 

       スライド1 
 
 
   
 
図2.図1のオートラジオグラフ。
赤丸内部は、落ちこぼれた種子をかき集めてセロテープに貼り付けたもの。

  
    
  

  
スライド2 
 
図3.コスモスのオートラジオブラフ。図1のネガテイブ像
 

 
 

 
 
表1。コスモスの部位別放射能濃度 
コスモス放射能jpeg  

 
   
  少し細かく組織をわけて放射能を測定したら、細い葉が一番強く汚染しているのだが、種子も茎と同ていどに高濃度に汚染されていた。図2や図3で、どの株も花の部分が強く汚染しているように見えるのは、花器には種子がごっちょりとついて放射線(ベータ線)が重なって撮像されているからである。図2と図3の左下に赤丸で囲んでいるのは、一つ一つの種子である。これら一粒ずつがくっきりと感光していることがわかる。つまり、これまでもこのWINEPぶろぐでも幾度となく述べてきたように、セシウムは次世代に移行する。
 
       現在 住民が避難して居ないので、コスモスは原発事故以来毎年タネを付けてはそれを周辺土壌に落下させて、また翌年に発芽させてきたことになる。コスモスは栽培種であるので、根からの養分吸収力(吸肥力)がつよく、根が浅いので絶えず表層の放射能汚染土壌から放射性セシウムを容易に吸収してきたものと思われる。避難する前の住民がカリを含む肥料をこの庭土に撒いていたとしても、5年間もこの庭で草花が生々流転(吸収枯死分解)を繰り返せば、すでにカリの効果も少なくなって野生に近い土壌条件になってきているのだろう。
 
 子細に見ればコスモスはいろいろ形態的な変異を起こしているに違いないのだが、いかんせん普段の正常な姿が小生の頭にはないので、異常かどうかがわからないのが、我ながら情けない。

 
       
(森敏)

2017-03-10 08:27 | カテゴリ:未分類

まもなく2011年3月12-20日の福島第一原発事故後6年めとなる。以下の文章は少し硬い論文調ですが、吟味してください。 
       
       

原発事故で帰還困難区域の山林は、住民が入らなくなったので、樹木が間伐されない。なので、荒れ放題である。木々にツタが絡まり、場所によっては特に巨木のマツの枯死や倒木も始まっている。
    
  スギやマツでは「こぶ」(クラウンゴール)ができて、枝が枯れているのが目に付く。これらは原発事故前からもあったのだろうが、被害は拡大しているのではないだろうか(図1、図9)。「
スギこぶ病」は,子のう菌(Nitschkia tuberculifera KUSANO)の一種が引き起こすスギの病害で,これに罹病すると,枝や葉,場合によっては幹に大小のこぶが生じ,樹勢が衰え,枯死にいたることもあるといわれている。

      

  2015年までは、この「スギこぶ」は球状の立体的なものなので(図2、図3)、感光面が平面のIP-プレートでの放射線像の撮像がむつかしいのではないかと思って、小生はあまり採取に熱心ではなかった。しかし、大学に持ち帰って放射能を測定してみると、飯舘村のものや浪江町のものはとてつもない値が出た。表1には浪江町の山林で採取したスギこぶを示している。総じてキログラム当たり15~20万ベクレルを示し、樹皮よりも高い放射能値である。

    

これは放射性プルーム(雲)による被爆当初に、直ちに被爆樹皮から「スギこぶ」に取り込まれた放射能が植物細胞よりもはるかに代謝活性の強い「杉こぶ」の菌体に積極的に取り込まれたからではないかと思われる。また、生体高分子樹脂で「スギこぶ」の表面は子細に入り組んだ凸凹になっており(図3)、いったんそこに入り込んだ放射能は樹脂と結合して抜け出られないものと思われる(図5、図6、図7)。

 

立体的なまま放射線像をとるとスギこぶとIP-プレートが密着していないので、放射線が立体角4πの方向にあちこちに飛んで、ぼけたイメージで感光した(図4)。実際の森林では、この「スギこぶ」からこのように放射線が発散しているわけである。
 
      スギこぶ菌にやられた杉は、結局倒木して、急速にシロアリなどの小動物に食べられて、土壌中に有機物として帰っていく。放射性セシウムも同じ運命をたどり、森林生態系の元素循環の中に繰り込まれていく。

 

スライド3 
図1.「杉こぶ」。枝は枯死し始めている。




 
スライド1 
 
図2.「杉こぶ」。実験室に持ち帰った「杉こぶ」がついた枝。枝はまだ生きている。


 


スギこぶ拡大図jpeg 

図3.図2の一つの「杉こぶ」の拡大図




 
スライド2 
 
図4.図2を立体のままIP-プレートで感光したもの。放射線が四方に飛び交っているので像がぼけている。


スライド1 
図5.「杉こぶ」をのこぎりで2つに切断したものを対称形に開いて並べたもの。撮像するときに角度が少しずれたのだが、右のものを少し右下がりにすると両者が合体するいめーじになる。上のオートラジオグラフが下の杉こぶのサンプルに対応している。

 

 
スライド3 
 
図6.図4の左のサンプルの拡大図 。白い感光していない部分はpith(木髄)





スライド4 
図7.図4の右のサンプルの拡大図。
白い感光していない部分はpith(木髄)


 
 
 



スライド1 

図8.「杉こぶ」の断面解剖図 (文献 J.Jpn.For.Soc. 68(11) '86 からの引用 )


 


スライド2 
 
表1.上のゲルマニウム半導体用の容器(U-8)に入っている「杉こぶ」に対応する放射能の測定値。 
スギこぶ1-1と1-2は半切の対になっているそれぞれ一方の測定値。
スギこぶ2-1と2ー2は半切の対になっているそれぞれ一方の測定値。
スギこぶ3-1,2,3は3個の小さな杉こぶの合量。


    
(森敏)
 
付記1:以下の写真に見るように、飯舘村での激甚な杉こぶ被害の、迫力ある写真は、以前に「中部支援ネットワーク」から小生にも送られてきたことがある。ここに無断で掲載させていただきました。

 
スライド1


図9.飯舘村での被害が激甚な杉の「杉こぶ」。枝の先端のみに葉が茂っている。大方の栄養分を「杉こぶ」に収奪されているのだろう。
 
追記1:以下の図10、図11は図6と図7に対応するネガテイブ画像です。こちらのほうが放射能汚染の度合いがわかりやすいかもしれません(白い部分が放射能の局在部位です)
 
スライド1 
図10.図6のネガテイブ画像。白い部分が放射能汚染部位。白が鮮明なほど汚染が激しいことを意味している。
 
 
スライド2 
図11.図7のネガテイブ画像。白い部分が放射能汚染部位。白が鮮明なほど汚染が激しいことを意味している。

    

2017-02-17 08:06 | カテゴリ:未分類

民家の庭先にショウブとハスを混食しているプラスチックバットがおいてあった。きっと避難している家主は水生植物の愛好家だったのだろう。これまでも溜め池などでは、岸から離れているハスなどの水生植物を採取するのが少しややこしかったので、このプラスチック箱の中から紫色の2本を茎の部分から上を失敬した。葉は全面的に水につかっていた(図1

       

新聞紙で乾燥するとさらに紫色が強くなった(図2)。研究室に持ち帰ってガイガーカウンターを当てると1600 cpmと、とてつもなく高い値を示した。以下の動画を見てください。
 https://vimeo.com/190422228 

         
  それをオートグラフに取ったのが図3(ポジテイブ画像)と図4(ネガテイブ画像)である。ハスの葉脈が子細にくっきりと浮かび上がっているのがわかる。
    
  この植物体を葉と茎にわけて放射能測定したものが表1である。茎と葉は共に、Cs-134 と Cs-137の合量で数十万ベクレルとべらぼうな値であることがわかる。


スライド4 
 図1.民家の庭に放置されたハスを育てているプラスチックバット
 
 
 
スライド1 
 
 図2. ハスをサンプリングして押し葉にしたらこんな紫色になった。

 
 
 
 
スライド2 
 
 
 
 
 図3.図2のオートラジオグラフ
スライド3 
 

 図4.図3のネガテイブ画像



 
表1.ハスの放射能
スライド2 
 

なぜこんなに高いのだろうか? 以下に若干考察してみた。

       

第一にこの地域に降り注いだ総放射線量がべらぼうに高かったであろう。今でも空間線量は8マイクロシーベルト付近である。しかしそれ以外に、第二に、原発事故以来このプラスチックの箱に降り注いだ放射能は箱の外には逃げないで箱のなかに留まったままであるはずだ。土壌は箱の底に数センチである。いつも土壌表面は水で空気から遮断されているので還元状態にある。たぶんそういう環境下ではセシウムは土壌への吸着が進みにくく、いわば箱の中で放射性セシウムは水の中でリサイクルし続けていると思われる。冬になって葉が枯れて腐ると、微生物菌体のコロイド状になり、そのコロイド状の有機性セシウムは、また次の春になると無機セシウムイオンとして遊離されてハスの根からばかりでなく葉からも再吸収されるわけである。

     

フキノトウなどでは、淡水状態で出てくるフキノトウと陸生のフキノトウでは前者の方が遙かにセシウム汚染が強いことがすでに明らかにされている。これは淡水状態では水につかっている地上部分からも容易に放射性セシウムが吸収されるからである。

      

水稲の場合も、水を張った出穂期に森林で汚染した沢水がかかると、容易に茎からセシウムを吸収して、お米の放射性セシウム含量がたかまるので、要注意なのである。小生自身が実験したわけではないが、カリウムを農水省が定める基準値量(25mgK2O/100g土壌)以上施肥していてもこの経茎吸収は押さえられないと思われる。

      

たかがハス、されどハス。 原発事故後ほぼ6年になるが、放射能汚染地での自然観察で学ぶことはまだまだ多いのである。

  
   
(森敏・加賀谷雅道)

     
 
 
 
 

FC2 Management