2017-02-17 08:06 | カテゴリ:未分類

民家の庭先にショウブとハスを混食しているプラスチックバットがおいてあった。きっと避難している家主は水生植物の愛好家だったのだろう。これまでも溜め池などでは、岸から離れているハスなどの水生植物を採取するのが少しややこしかったので、このプラスチック箱の中から紫色の2本を茎の部分から上を失敬した。葉は全面的に水につかっていた(図1

       

新聞紙で乾燥するとさらに紫色が強くなった(図2)。研究室に持ち帰ってガイガーカウンターを当てると1600 cpmと、とてつもなく高い値を示した。以下の動画を見てください。
 https://vimeo.com/190422228 

         
  それをオートグラフに取ったのが図3(ポジテイブ画像)と図4(ネガテイブ画像)である。ハスの葉脈が子細にくっきりと浮かび上がっているのがわかる。
    
  この植物体を葉と茎にわけて放射能測定したものが表1である。茎と葉は共に、Cs-134 と Cs-137の合量で数十万ベクレルとべらぼうな値であることがわかる。


スライド4 
 図1.民家の庭に放置されたハスを育てているプラスチックバット
 
 
 
スライド1 
 
 図2. ハスをサンプリングして押し葉にしたらこんな紫色になった。

 
 
 
 
スライド2 
 
 
 
 
 図3.図2のオートラジオグラフ
スライド3 
 

 図4.図3のネガテイブ画像



 
表1.ハスの放射能
スライド2 
 

なぜこんなに高いのだろうか? 以下に若干考察してみた。

       

第一にこの地域に降り注いだ総放射線量がべらぼうに高かったであろう。今でも空間線量は8マイクロシーベルト付近である。しかしそれ以外に、第二に、原発事故以来このプラスチックの箱に降り注いだ放射能は箱の外には逃げないで箱のなかに留まったままであるはずだ。土壌は箱の底に数センチである。いつも土壌表面は水で空気から遮断されているので還元状態にある。たぶんそういう環境下ではセシウムは土壌への吸着が進みにくく、いわば箱の中で放射性セシウムは水の中でリサイクルし続けていると思われる。冬になって葉が枯れて腐ると、微生物菌体のコロイド状になり、そのコロイド状の有機性セシウムは、また次の春になると無機セシウムイオンとして遊離されてハスの根からばかりでなく葉からも再吸収されるわけである。

     

フキノトウなどでは、淡水状態で出てくるフキノトウと陸生のフキノトウでは前者の方が遙かにセシウム汚染が強いことがすでに明らかにされている。これは淡水状態では水につかっている地上部分からも容易に放射性セシウムが吸収されるからである。

      

水稲の場合も、水を張った出穂期に森林で汚染した沢水がかかると、容易に茎からセシウムを吸収して、お米の放射性セシウム含量がたかまるので、要注意なのである。小生自身が実験したわけではないが、カリウムを農水省が定める基準値量(25mgK2O/100g土壌)以上施肥していてもこの経茎吸収は押さえられないと思われる。

      

たかがハス、されどハス。 原発事故後ほぼ6年になるが、放射能汚染地での自然観察で学ぶことはまだまだ多いのである。

  
   
(森敏・加賀谷雅道)

     
 
 
 
 

2017-02-05 05:41 | カテゴリ:未分類

昨年夏に福島県浪江町で車を転がしていると、道路脇に低木の新鮮な若木がはえていたので、何気なくサンプリングして、大学に持ち帰った。サーベイメーターで測ると、葉の部分が異常に高い放射能値(660 cpm) を示した。葉の部分がこんなに高い内部被曝の植物はこれまで検知したことがなかったので、これは外部被曝のせいかな?と思った (図1,図2.)。

  

そこで押し葉にしたら、葉は実にペラペラの半透明で薄い紙のようになった。だからオートラジオグラフを撮ると実に鮮明な像がとれた。(図3,図4)。枝分かれしたどの葉も葉脈が明快にわかり、葉脈間もほぼ均一に内部被曝していることがわかる。外部被曝は全くない。

     

  木本(もくほん)で地上部がこんなに放射能が高いのはこれまで経験がない。あまり気にしていなかったのだが、この植物が生えていた土壌が腐葉土で可溶性の放射性セシウムを大量に含んでいたのかもしれない。あるいは、この植物の根のカリウムイオン・トランスポーター(膜輸送体)がかなり特異的にセシウムイオンも吸収するトランスポーターなのかもしれない。セシウムイオンの濃度を調べる必要が出てきた。この植物は意外にセシウムを濃縮する植物なのかもしれない。

 

  この植物の名前が長い間わからなかったのだが朋友野田坂伸也氏に同定してもらったところ「ミツバウツギ」ということである。
     
  表1でもわかるように、この植物の葉や茎はとてつもなく高い放射線量で被曝をしていることがわかる。繰り返すが、図3,図4でわかるようにこの植物は全く外部被曝に特徴的なホットパーテイクルが見られない、すなわち全部腐葉土から放射能を吸収したものである。

      

 

 

 





ミツバウツギ低木jpeg 
 図1.ミツバウツギ。光っているのはセロテープ。
 
       
 
 
スライド1 
 図2 ミツバウツギ 黄色のメモ用紙にガイガーカウンターでの測定値(cpm:1分間計数値)がかかれている。
 
     
    
 
スライド2 
図3.図2のオートラジオブラフ(ポジテイブ画像)放射能がどの葉にも均一に分布していることがわかる。全部内部被曝である。

 




 
スライド3 
図4。図3のネガテイブ画像 中心部の茎の分かれ目が強く感光しているのは、いつも説明していますが,ここは導管と師管が複雑に入り乱れている部分なので放射能の滞留量が多いからなのです。
  

  

       

表1 ミツバウツギの放射能 


ミツバウツギの放射能jpeg 
(森敏)
2017-01-25 04:09 | カテゴリ:未分類
 

  これまでに複数回キク科の植物を採取してオートラジオグラフを撮ったことがあるのだが、どうもキク科はセシウムの地上部への移行が悪い(移行係数が低い)のではないかとずっと思っていた。

 

  1昨年の秋あちこちにキクが最盛期を迎えていたので、道ばたに一株旺盛にはえているきわめてありふれたキクをランダムに枝の部分から数本採取した。

   
 
図1.道路端のノジギク
スライド1 
     
       
 図2.図1のノジギクのオートラジオグラフ(数値はガイガーカウンターの値)
 
スライド2
    
 
 図3. 図2のネガテイブ画像
のじぎくネガjpeg  
 
     
   
スライド1 
表1. ノジギクの放射能
    
     
        
   これを台紙に貼り付けてガイガーカウンターであらためてベータ線量を量ると枝ごとにかなりのばらつきがあった(図1)。そこで実際にオートラジオグラフを撮ると、枝ごとにかなり濃淡が出た(図2、図3)。

          

   多分、ある枝に対応する根は可溶性の放射能を含んだ土壌に接しており、それを吸い上げたのだろう。一方、別の枝に対応する根は放射能が固着した土壌に接しており、セシウムを吸収しなかったのだろう。

            

   組織を部位ごとにわけて放射能を測定したら、表1 のようになった。葉 > 花 >茎 の順に濃度が高いのだが、オートラジオグラフでは一番花が強く感光しているように見える。これは全体を押し葉にしたので花が花びらやその他の生殖器官で折り重なって凝集しているので、多重に放射線を発してフィルム(IP-プレート)が感光しているからである。葉の部分でも折り重なっているところは濃く感光していることがわかる。
       
  植物は根が土壌中に深いか、浅いか。根の生長点や根毛が土壌の放射能に接しているかどうか。などの微妙な差異によって、道管を通って地上部の対応する組織まで放射能が到達する量が極端に変動することが明らかになった。すでに漠然と明らかになっていることだが、こんなにはっきりと差が出るとは予期していなかった。
     
  従って、いささか専門的な議論になるが、
植物による放射性セシウムの「移行係数」なるモノは、根がどっぷりと浸かった水耕栽培でしか評価できないと断言できる。すなわち:
移行係数=地上部の放射性セシウム濃度/水耕液の放射性セシウム濃度
この値は従来から土耕栽培やフィールドで測定されている
移行係数=地上部の放射性セシウム濃度/土壌の放射性セシウム濃度
よりも、はるかに高くなると考えられる。

   
      
   
    
(森敏)
   
     

付記1.植物学者の牧野富太郎はこのキクを郷里の土佐吾川郡川口村の仁淀川河畔で発見して、のぢきく(野路菊)と新称し、ラテン学名に自分の名 Makino を付した。すなわち、Chrisanthemum morifolium Ramat. var.spontaneum Makino と命名した。
しかし彼はその後全国を旅しているうちに、この菊がいわゆる「家植菊」と同種に属し、既知の「小菊」と酷似して区別できないことを知った。これが栽培されていくうちに好事家によって大輪の様々な園芸新種に改良されていったのであろう、と記している。つまり、のぢきく が原種に近い品種であると認識した訳である。
牧野富太郎は発見したこの野地菊の写生図を、以下のように牧野植物図鑑(北隆館)の第12図版に重要な発見として特別に載せている。
 
まきのにじぎくjpeg 

この写生図を見てもわかるように、牧野は根の形態には全く着目していない。
 
追記1: イネに関して今回の原発事故による放射能汚染土壌水田からサンプリングしたイネに関しては、『移行係数』は0.57-0.017と300倍にもなる、大きな幅のばらつきがある。
2016-12-20 16:25 | カテゴリ:未分類

   放射能汚染地域では、避難して人が入らないので、森林では樹木に様々なツル性植物が自由自在に繁茂しています。このツル性植物は、何らかの遺伝子が欠損しているために単独では重力に抗して空に向かって屹立できないので幹木に着生して上に伸びていくものと思われます(図1、図2)。(おそらく野生のツル性植物は宇宙線やトランスポゾンによる自然突然変異で、ジベレリン生合成系の遺伝子の変異株だろうと思われます。)       

              
  友人の園芸師に依れば「
このツルアジサイは、名前のようにツルになってのびるアジサイで、貧弱ですがガクアジサイに似た花を咲かせます。付着根という細い根で、高木の幹や岩などにくっついて上っていきますが、付着根は水を吸う働きは無く、吸水はふつうの植物と同じに、地中にのびた根が行います」と言うことです。(付記1)
   

   現地の藪の中で、松の幹木に張り付いて高く高く昇っているいくつかのツル性植物をみて、これが松の木の樹皮などの表層に高濃度で付着している放射能を吸収しているのかどうかを知りたいと思いました。そういえば、これまで小生は着生植物などにあまり着目していませんでした。(よく言われることですが風景は本人がその気にならなければ{見れども見えず}ですね)

     

   そこで、このツルアジサイを松の木から丁寧に引っぺがして、実験室に持って帰り、押し葉乾燥後、オートラジオグラフを撮像しました。
  


スライド1 
図1.ツルアジサイ。ツルのあちこちに細い着生根がでている。下から上に向かっている。
    
    
スライド2


 

 図2.図1のオートラジオグラフ

   
   

スライド3 
 
 図3.図1の同じツルのもっと上の部分。下部に新芽が見られる。右上の部分は樹皮ごとはがれたもので、そこに着生根が食い込んでいる。ツルは左下から時計回りに先端に向かっている。
 
   
    

スライド4 
  
    
    


図4.図3のオートラジオグラフ。新芽や着生根が放射能で内部被曝(すなわち内部標識)されていることがわかる。
 

スライド6 
 
 図5。樹皮に食いついたツルアジサイの細い着生根部分の拡大図
    
    
  
   

スライド7 

 図6.図5のオートラジオグラフ。図4のネガテイブ画像の右うえの部分の拡大図。着生根はあまり強くは感光していない。樹皮は外部被曝の証拠であるホットパーテイクルが付着してつぶつぶに光っている。

    
     
 
 
表1 ツルアジサイの組織部位別放射能: Bq(ベクレル)/kg乾物重
ツルアジサイの放射能jpeg 
   
 

表1や図2,図4で見るように、ツルアジサイではツル性茎の部分の放射能濃度が最も高く、これは全部内部被曝によるものです。また、主ツルや分枝ツルから少しばかりちょろちょろ出ている付着根は葉やツル性茎と比べて圧倒的に放射能が低い。これらのことは、ツルアジサイが着生した松の樹皮から水やセシウムを吸収しているのではなく、松の根元の土壌からたちあがっている主ツル性茎の根そのものから、放射性セシウムを吸収して地上部に移行していることを意味しています。あちこちの付着根はただ我が身を松の幹に支えてもらうための「取っ手」にすぎないことを意味しています。

      

表1に見るように、ツルの放射能濃度が斯くも高いのは、降雨の時の松の樹幹流から松の根元の土壌や落ち葉や腐植層に流下拡散する放射能を、ツルアジサイが吸水とともに効率よく吸収するためではないかと思われます。ツル性植物は一般に鳥の巣材にも使われます。このようにしてツル性植物は放射性セシウムの森林での循環にゆっくりと人知れず関わっていくのだと思われます。

      

 
     
       

(森敏)
  

 付記1.小生にはこの植物の同定ができなかったので野田坂緑研究所の朋友野田坂伸也所長に問い合わせたらこのような解説をいただいた。

 

2016-12-15 12:21 | カテゴリ:未分類
 

以前に、原発事故1年後のヒノキの放射能汚染について外部被爆を中心に報告しました。

   2012/05/24 : ヒノキの放射能被爆像

           

 原発事故後5年半以上経った現在のヒノキはどうなっているのでしょうか?
 

       現地で観察すると1本のヒノキのある枝には時々異常な数の種子を付けています(図1)。事故以来あちこちのヒノキをずっと観測しつづけているのですが、その法則性が今ひとつつかめていません。本来栄養組織である葉になるべきものが、発生の途中で何らかのきっかけで分裂異常が起こり、生殖器官である球果になる確率が高まったのではないかと思われます。
 



スライド2 
 
図1.異常な数の球果を付けたヒノキの枝(浪江町大堀地区)

   


     図2をみると、この2つの枝全体には、どこにも外部被爆を思わせる、放射能の黒い斑点がみられないので、このオートグラフの画像は全部内部被爆のセシウムによるものです。つまり原発爆発時に降下したセシウムが付着した樹皮から吸収されたものが、ヒノキの体内のどこかにストックされたものからと、当時土に降下したり、木の地上部全体が放射能によって被曝した、その放射能が、降雨による溶脱や樹幹流やで土に浸透した。そのセシウムが根から吸収されて、この枝にはるばると転流してきたものとしか考えられません。
   


 
スライド3 
 
 
 図2.図1.のオートラジオグラフ(ポジテイブ画像) 球果が強く内部被曝している。球果の中には種子が含まれているのでその放射能も積算されて感光している。(表1.参照ください)

 
 
スライド4 

 
  図3.図1のオートラジオグラフ (ネガテイブ画像)
 
  
  
 
   


表1.図1の植物を解体して部位ごとの放射能の濃度を測定したもの

スライド1    

  この枝全体を細かく解体して、組織ごとの放射能の濃度を測定すると、上記表1のようになりました。放射能濃度の強い順に 球果の殻>新葉>種子>枝>旧葉 となりました。種子の値が結構高いことに驚かされます。ヒノキは旧い葉から枯れていくので、その過程で、旧葉のセシウムがカリウムとともに徐々に枝を通って新葉や種子に転流していると考えられます。(今はやりの「オートファジーという現象」ですね)

     

球果は種子が中で育成されていく容器なので、そこにいったん入ったセシウムは殻を形成して固着して再度動くことはありません。ですので、この殻の部分はセシウムがたまる一方であると考えられます。だから一番放射能濃度が高いのでしょう。一方、種子はセシウムをため込みながら(実際にはカリウムをため込んでいるのですが、セシウムがあるとそれも間違ってため込んでしまうのです)同時に来るべき種子発芽の時の栄養源として、でんぷんやタンパクを合成してため込んでいく必要があるのでので、セシウムの濃度が次第に薄まるものと考えられます。

    

どんどん細胞が分裂と伸張を繰り返して組織を大きくしている新葉もカリウムの要求量が高いので同じ挙動を示すセシウム濃度も高くなっているのです。

   
 
(森敏)

付記:ヒノキの2014年の像については
「放射線像 放射能を可視化する」(皓星社)の92ページ-94ページに載せています。この像では、被曝初期のものであるので、枝の基部の外部被曝が顕著です。 


FC2 Management