2017-10-05 06:31 | カテゴリ:未分類

   昨年の春、浪江町昼曽根で、運転手が大事を取って居眠りしている間に、そこら辺をぶらぶらしていると、灌木にまつわりついている、小さないばらのつる性植物をみつけた。小さな花器の花びらが散って、実が付いて太りかけていたので、切りとってきた(図1)。ニガイチゴというのだそうである
 
  
花器に強く放射能が濃縮していることがわかる(図3,4、5、表1)。これまでの経験から総じて植物のいろいろな組織の中では、花器部分にセシウムは濃縮する傾向が顕著である。このことは先日の日本土壌肥料学会で、ニガイチゴの例も含めてポスターで発表しておいた。

  

     

ニガイチゴ1

  図1 ニガイチゴ




    
ニガイチゴ1kakudaizu jpeg
   
   図2.ニガイチゴの拡大図
 
 
 
ニガイチゴ3 
 図3. 図1のオートラジオグラフ(ポジテイブ像)

 





     
    

 ニガイチゴ4

  
図4. 図3のネガテイブ画像。
 
 
スライド2 


 

 図5。図3の部分拡大図(図2に対応)のオートラジオグラフ






表1.ニガイチゴの放射能
  

 ニガイチゴ5


 

(森敏)

付記1:植物の同定には(株)アスコットの若林芳樹社長のお世話になりました。
 
付記2:花器などの生殖器へのセシウムの集積に関しては、先日の日本土壌肥料学会でまとめて発表しました。その時のポスター発表(P-8-1-17)の講演要旨は以下の通りです。


放射性セシウムは花器に濃縮される

森敏・加賀谷雅道2・広瀬農3・小林奈津通子3・田野井啓太朗3・中西啓仁

NPOWINEP 写真家 東大農・アイソトープ施設 東大院・農学生命科学)

 

2011年3月11日の東電福島第一原発事故以降、ほぼ毎月汚染が強い避難困難区域に現地入りして、6年間にわたって様々な植物を採取して、放射能汚染のオートラジオグラフを撮像してきた。1986年のチェリノブイリ原発事故でもX線フィルム(当時はBASがなかった)撮像は実に希少である。BASが使える現在でも世界の植物学者はチェリノブイリでの植物の撮像に興味がないのか報告が少ない。したがってわれわれは今回の福島原発事故の場合は経年的に様々な植物のBAS撮像数をこなして、福島で起こっている固有の植物生態系汚染の傾向をつかむことを目指している。その結果、落葉樹では落葉によって葉が入れ替わることにより、新葉の放射能については2012年以降は激減した。しかし幹や枝の部分には当初の原発由来のホットパーテイクルがずっと残留したままであるので新葉の放射能の一部は、経根吸収分ばかりでなく幹や枝の樹皮部分からの転流分が含まれている可能性を否定できないでいる。一方、一年生の双子葉植物は2011年当初からも下位葉が風雨時の土ぼこりによる外部汚染を受け続けている。しかし内部被ばくは土壌放射能由来のものに限定されてきており、放射性セシウムの土壌への固着が進行しているので、植物体地上部全体としての放射線量は急激に減少している。これまでは地上部と地下部に分けるとか,新葉と旧葉にわけて、放射能分布を比較していたが、2015年秋からは、秋になって花が咲いて種子ができている植物を採取して、そのまま放射線像として撮像する作業を始めた。その結果意外なことに花器として、あるいは種子そのものとして、放射能が高い濃度で検出されることが改めて分かってきた。タケニグサ、ハナタデ、スイカズラ、ホウセンカ、イラクサ、ノジギク、ヒノキ、マツ、ナギナタコウジュ、ドクダミ、コセンダングサ、タンポポ、ツクシなどについて放射線像を報告する。

 

2017-06-28 10:40 | カテゴリ:未分類

       2012年より、映像作家の加賀谷雅道氏と取り組んできた放射線像プロジェクトは、オーストリア リンツ市で1987年より続く国際的なコンペティション Prix Ars Electronica 2017 で、Hybrid Art部門のHonorary Mentions(栄誉賞)を受賞いたしました。これに伴い、今秋97から17日まで同市 OK Centerにて放射線像の展示が決定いたしました。


https://www.aec.at/prix/en/gewinner/

 

Prix Ars Electronicaでは、これまで坂本龍一氏といった個人からWikipediaのような団体まで表彰しています。変わりどころでいえば、明和電機やニコニコ動画も表彰されているのが面白いです。
 
 
以下は Ars Electronica 概要(日本語ホームページからの抜粋)です。

 スライド1

アルスエレクトロニカは常に、新しいことを探求しています。アート、テクノロジー、サイエンス、いずれに限定することなく、すべてをまたがった分野に注目 してきました。現在という時代に対する斬新な、思索に富んだアイデアやデザイン、刺激的なアクティビティ、哲学的な議論、分析的評価…30年間ここオー ストリアのリンツから、アルスエレクトロニカは、常にこの新しい表現領域を追い続けてきました。

 

また、もうひとつの重要キーワードは、「society (社会)」です。アルスエレクトロニカはその芸術的、科学的ミッションを、いつも社会というキーワードとともに考えてきました。結果としてリンツ市は、従来の伝統文化の維持や観光産業の形成プロセスを超え、文化的・芸術的発展をコアコンピタンスにした都市再生のプロトタイプとして、コミュニティデザインのよいモデルとなっています。

     

   

 (森敏)

付記1:
 日本でも国際的な大学間協定で「科学と芸術」などの境界領域での学問の新展開を目指す試みが始まっている。しかし、まだまだ世界の趨勢からは起ち遅れていると言わざるを得ない。世界は「科学・芸術・社会」という総合的な分野での人間活動そのものの独創性(オリジナリテイー)や先駆性(プライオリテイー)や新規性(イノベーション)の評価の時代に突入している。
          
 一見意表を突いたボブ・デイランによるの昨年のノーベル文学賞受賞はその典型だろう。
         
 今回、加賀谷雅道氏は伝統ある アルスエレクトロニカに「放射線像」で応募し見事に受賞した。実に慶賀すべきことと思う。日本では個人でも応募できるこういう総合的な賞の部門がまだない。
    
 様々な学術賞や芸術賞らは、既存の学会や何らかの組織が推薦しなければならないのが大半である。このようなシステムは、賞の選考委員たちにとっては、選考の手間が省ける利点がある。しかしそれゆえに既存の芸術や学問の諸分野のプロフェッショナルな選考委員たちからは、これまで考えたこともない斬新な創作物は見向きもされず、推薦もされず、本評価にかかる前にふるい落とされる可能性が非常に高い。であるから、選考に時間がかかっても、個人でも応募できる賞の設立が若い人に対して強く望まれる。

    
2017-06-06 09:08 | カテゴリ:未分類
   
今回は少し難解ですが重要な発明ですので、どうか我慢して読んであげてください。
   
以下農研機構のホームページからの転載です
 
放射性セシウムを吸収しにくい水稲の開発に成功

- コメの放射性セシウム低減対策の新戦力 -

情報公開日:2017年5月31日 (水曜日)

農研機構
岩手生物工学研究センター


  1. 農地土壌から作物への放射性セシウムの移行を低減するために、水稲では、カリ肥料の増肥が効果的な対策として実施されています。一方、長期にわたって、省力的かつ低コストで行える新たな低減対策も生産現場から求められています。
  2. そこで農研機構は、イオンビーム照射による突然変異法により、放射性セシウムを吸収しにくいコシヒカリ(Cs低吸収コシヒカリ)を開発しました。Cs低吸収コシヒカリを、放射性セシウムを含む水田で栽培した場合、コメの放射性セシウム濃度はコシヒカリの半分に減少しました。
  3. Cs低吸収コシヒカリにおいて、コメの放射性セシウム濃度が低下したキー(鍵)となる遺伝子を岩手生物工学研究センターとの共同研究で特定しました。この遺伝子は、イネ根のナトリウム排出に関与するタンパク質リン酸化酵素遺伝子(OsSOS2;オーエスエスオーエスツー)が変異したものです。この変異が原因で、Cs低吸収コシヒカリは根のセシウム吸収がコシヒカリに比べて、抑制されていました。
  4. Cs低吸収コシヒカリの生育特性や収量はコシヒカリとほぼ同等で、コシヒカリと同じ方法で栽培できます。また食味もコシヒカリとほぼ同等です。
  5. セシウム吸収を抑制する遺伝子(OsSOS2の変異)を簡易に検出できるDNAマーカーを開発しました。このDNAマーカーの活用により、コシヒカリ以外の品種にも放射性セシウムを吸収しにくい性質を効率良く付与することができます。
  6. 本成果は英国科学雑誌「Scientific Reports」(2017年5月25日発行)のオンライン版に掲載されました。
        
      低Csイネjpeg

      


ホームページは

http://www.naro.affrc.go.jp/publicity_report/press/laboratory/niaes/075645.html



投稿原著論文は
Satoru Ishikawa, Shimpei Hayashi, Tadashi Abe, Masato Igura, Masato Kuramata, Hachidai Tanikawa, Manaka Iino, Takashi Saito, Yuji Ono, Tetsuya Ishikawa, Shigeto Fujimura, Akitoshi Goto & Hiroki Takagi (2017) Low-cesium rice: mutation in OsSOS2 reduces radiocesium in rice grains. Scientific Reports, 7, 2432.
doi:10.1038/s41598-017-02243-9


(森敏)


付記1:

この研究は福島第一原発事故後の2年後ぐらいから農研機構の石川覚グループで行われていたもので、まさに画期的な成果です。小生は福島第一原発事故後の学術会議主催のシンポジウムで2回にわたって水稲根のセシウムの細胞内への膜輸送にはカリウムのトランスポーターが使われている可能性が高いので、カリウムのトランスポーターが働かなくなったイネの量子ビーム変異株をスクリーニングして低セシウム吸収イネを作出すべきことを提案していました。当初は皆さん「またモリビンがほらを吹いている」という冷たい雰囲気でしたが、日本土壌肥料学会では、その後石川覚グループが量子ビーム育種で、秋田県立大では頼泰樹グループが変異原(アジ化ナトリウムやMNU)を用いてスクリーニングを行って該当遺伝子を同定しています(これらの遺伝子破壊株はカドミウムの場合のようにほぼ100%セシウムを吸収抑制するわけではないということですが)。今回の農研グループの成果はカリウムトランスポーターの破壊株に関する発表ではないですが、先駆的な新種の発明であることは間違いありません。今後、カリウムトランスポーターであるHAKやAKT1などの破壊株の低セシウムコシヒカリの発表が続くものと大いに期待されます。(森敏 記)

 

付記2:

小生は今回の福島第一原発事故後の研究者の在り方として、単にチェリノブイリ原発事故で世界の研究者が明らかにしてきた事の追試的な研究ばかりでなく、サイエンスとして新しい観点からの発明や発見があるべきだとずっと主張し続けてきました。今回の農研機構・岩手生物工学センター・福島県農業総合センターの共同研究の成果は、まさに小生の提案に沿う成果であり、高く評価したいと思います。
 
付記3:過去の農研機構・東大との共同研究による「量子ビーム変異を用いた低カドミウム米の開発に成功」は以下のWINEPホームページとWINEPブログを参照ください。

  WINEPホームページ: http://www.winep.jp/news/153.html

  WINEPブログ:2014/05/14 : 中国の広大なカドミウム汚染土壌に、日本の無・カドミウム米「コシヒカリ環1号」を


2017-01-01 00:00 | カテゴリ:未分類

明けましておめでとうございます。 
     
  新春からえんぎでもないが、小生は最近もの忘れが非常に多くなってきた。顔は思い出してもその人の名前がどんどん頭から消えていく。高齢者が誰もが考えるように、特に脳の老化の進行を抑えたいと切実に思っている。親類にアルツハイマーで死亡した人物もいるので、なおさらである。単なるボケは一時的な記憶喪失であろうが、特にアルツは家族にばかりでなく、周囲の方々に、小生本人が自覚しないうちに、多大なる不快な思いをさせていることになるので、小生にとっては実に喫緊の課題である。

 

        と思って、最近送ってこられた日本農芸化学会の発刊する「化学と生物」をぱらぱらとめくっていたら、食品成分による脳老化改善・認知症予防の可能性 という総説が飛び込んできた。昔懐かしい生化学で習ったカルノシンやアンセリンなどという化合物の新しい機能として、認知症を遅らせる機能が発見されつつあるようで、実に慶賀の至りだと思う。

 

        以下ご参考までにあちこちから転載します。後期高齢者は必読かと。
   
1.
カルノシン と アンセリン の構造式 (:イミダゾールジペプチドと総称される)
     

カルノシン、アンセリンjpeg

 

2.

動物筋肉に多く含まれているカルノシンやアンセリンは、20世紀前半に発見されたジペプチドであるが、その研究は動物組織における分布や代謝に関するものが多かった。近年、これらは、様々な生体調節機能を有することが明らかとなってきた。わが国では、これからの高齢社会に向けて、カルノシンとアンセリンは、ヒトの健康維持に寄与する天然の機能性素材の1つとして非常に注目されている。(カルノシン・アンセリン研究会)

 

 

3.カルノシン

ヒトなどの哺乳類では、筋肉神経組織に高濃度に存在している。アヒルなどの一部の動物において N-メチルカルノシン (アンセリン)あるいはバレニンが多く見られる。生体内において酸化的ラジカル種のラジカルスカベンジャーとして働き、酸化的ストレスから保護しているといわれている。(Wikipedia)

 

 

4.アンセリン

哺乳類[1]骨格筋、および鳥類で見られるジペプチドであるヒスチジン基のイミダゾール環の酸解離定数pKa)は7.04であり、これが生理的pH水素イオン指数)の緩衝効果をもたらす[2](Wikipedia)

     

5.

「鶏肉には、高機能成分であるイミダゾールジペプチドがとても多く含まれている。特に、鶏胸肉には含有量が多く、100gあたり1gを越えるイミダゾールジペプチドが含まれている。このイミダゾールジペプチドには、筋肉の疲労を和らげる効果があることが知られていたが、筆者らが行った研究から脳老化に対しても改善効果があることがわかった。鶏胸肉は、高タンパク質で低脂肪であることから、生活習慣病が気になる高齢者にも、適した食材であると思われる。日々の食生活の中で、ほどよい頻度で鶏胸肉を摂取して頂くことを通じて、脳老化の改善が可能になると考えており、このことを証明する研究に、今後取り組みたいと思う。」{食品成分による脳老化改善・認知症予防の可能性}「化学と生物」2016年12月号)久恒辰博・東大新領域創成研究科准教授 の総説

 

 

  以上のように脳の老化の改善に、鶏の胸肉 が奨励されている。鳥肉は、ぱさぱさしてあまり小生の好みではないのだが、早速付近の安売り店で1kg購入してきたら、「こんなどこの産地かわからないものは料理しません」と家人にはけちょんけちょんだった。小生が大学に在職中にはイスラム圏からの留学生を引き受けたが、彼らは宗教上の理由と鶏肉が安価であることから、ほとんど毎食鶏肉を食べていた。統計を見たことはないのだが、案外モスレム圏の人たちにはアルツハイマーは少ないのかもしれない。是非疫学調査をして仮説を実証してもらいたいものだ。
     
  確かに、最近頻繁に鶏の胸肉を試食してみると、手羽肉と比べて胸肉は独特の粘っこいテクスチャーで、牛肉や豚肉のように、一度にあまりたくさん食べられるものではないようだ。その独特の風味こそがカルノシンやアンセリンによるものかもしれないが。胸肉をおいしくいただく調理法をホームページで勉強しなくっちゃ。しばらくは我慢して、舌が慣れるように、今年は人体実験してみようと思っている。何しろ酉年だから。

   

    


(森敏)
 
付記: そんなことテレビでガンガン紹介しているよ、と言われそうですが、小生自身はこの久恒辰博准教授の総説を読んでもっともらしいと思ったので、遅ればせながら紹介しました。


 
2016-12-08 14:14 | カテゴリ:未分類
  小生は年のせいで(:今年末から後期高齢者なかまに突入した)、放射能汚染現地調査の途中では、結構頻繁に水分を補給している。そうしないと、足の筋肉への血流が悪くなるためか、時々足がしびれるからである。だから、必然的に頻繁に尿意をもようすので、自動車を降りて道ばたから少し林内に入って、尾籠(びろう)な話で恐縮だが、立ちションベンをする羽目になる。そのときは、必然的にあたりの植生をじっと眺めることになる。もちろんかなりの放射能を浴びながら。そういうときにも結構あたらしい発見がある。
  
     
       飯舘村の 「あいの沢」 は、本来はキャンプ場であったのだが、いまは人っ子一人いない。昨年夏にここでやっと除染作業が行われた。除染といっても道路と道の両側の20メートル幅の山林の下草や土を深さ15センチばかりをとりのぞくのだから、どうしても地下茎で連なっている一部のシダ類などは、のぞき切れていない所がある。そこまで徹底的にやると作業に時間がかかって、だから除染作業員の労賃がかかるので、しかたがないからだろう。一応地表面が毎時0.23マイクロシーベルトにまで低下することを目指しているようではあるが。
  
  昨年の春、例によって小便をすべく林内に入った。数メートル入った林の中の空間線量は毎時4.5マイクロシーベルトであった。そこでは芽を出し始めたばかりの丈の低いワラビが群生していた。
      
  ワラビのいくつかを根から切り取って研究室に持ち帰って、ガイガーカウンターで測定してみると、意外に葉のベータ放射線量が高いので、それをオートラジオグラフに取ってみた(図2)。また、組織を各部位にわけて放射能を測定した(表1)。
 

 
スライド4 
 
 図1.春先の若いワラビの写真

 
スライド5 
図2.図1の若いワラビのオートラジオグラフ
   
 
 


  表1 ワラビの各部位の放射能(ベクレル/Kg乾物重)
 ワラビjpeg  



       図2で定性的に,表1で定量的に明らかなように、シダも未展開葉では若干放射性セシウム含量が高い。しかし、次の図3のように葉が全面展開したものでは、図4、図5で見るように、枝の最先端の葉は少し他より放射能が高いようだが(図5のネガテイブ画像で特に理解されると思う)、比較的放射能は全葉に均一に分布しているように見える。また、一見、左側の茎のみの部分が強く感光しているように見えるが、これは茎が葉に比べて数倍の厚みがあるので、放射能が重なって感光しているためである。


  
 
スライド1 
 図3.浪江町で採取したシダ
 
スライド2 
 
 図4.図3のシダのオートラジオグラフ ポジ画像
 
 
スライド3 
 図5.図3のートラジオグラフ。ネガ画像
 
 
  
地下茎の多年生のシダ類(ワラビはシダ類の一種)はタケノコと同じように地下系が土壌の表層直下数センチあたりを縦横にうねっていて、根がそのあたりまでに大部分が集積している「土壌の可給態の放射能」を吸収して地下系を通じてあちこちの新芽に直ちに分配輸送されるので、いつまでも地上部の放射能が高く推移する可能性が高いのである。


  

 
(森敏)
 
付記1:タケノコについては以下のブログを参照ください。
 
 2016/05/20 :
まだタケノコは要警戒: 給食のタケノコご飯から基準超のセシウム

 
付記2:シダ類の同定には 「フィールド版 写真でわかるシダ図鑑  池田怜伸 著」 トンボ出版 を参考にした。


 
 
 
  
FC2 Management