2017-05-20 15:37 | カテゴリ:未分類
   一昨年の秋、いつものように小生は運転手が仮眠する間に次々と道路端の植物をサンプリングしたのだが、地面を這っているカキドオシは全面的に、土ぼこりで放射能汚染していた(図1、図2、図3)。小さな根の部分はほとんどが汚染土壌の放射能と思われる(表1)。 

 
 

 
スライド1 
図1.カキドオシ (浪江町津島地区にて)
 
 
 
 
 
  
 
 
 
 
スライド2 
図2.カキドオシの放射能汚染。 オートラジオグラフ外部被ばくが強い。ツルの先端の新芽は内部被ばくが強そう。
 
 



 
スライド3 
図3. 図2のネガティブ画像 右中央部の濃い部分は分岐根。
 
   
    
 
表1.カキドオシの放射能

カキドオシjpeg 

 
  

(森敏)
 
 
 




 

 
 
 
 


 
 
 
 




 
 
2017-04-16 14:09 | カテゴリ:未分類


山菜採りでびっくり、四つ子のフキノトウ発見

20170409 1315(読売新聞)
新しい画像

四つのフキノトウが出た株

   
四つ子のフキノトウ
――

 山菜シーズンが本格化する中、新潟県新発田市のパート従業員の女性(66)が、四つのフキノトウが出た株を見つけた。

 女性は3日、同市上荒沢地区で兄と山菜採りをした。フキノトウを持ち帰って天ぷらにしようとした際に見つけ、「びっくりした」と話す。

 県立植物園(新潟市秋葉区)によると、越冬時の芽に傷がつくなどすると、複数の花序(花の集まり)ができることがあるという。
ーーーーーー

この記事を見て、小生は現地でこれまでフキノトウをよく観察してこなかったことに気付かされた。
フキの新芽も土から発芽して外に出るまでの期間には相当量の積算放射能を放射能汚染土壌から浴びるはずだ。よくみればこの報道にあるような奇形の新芽が、激甚な汚染土壌地ではあちこちで観察されるのかもしれない。今度訪れたらよく調べてみよう。これまでは見れども見えずだったようだ。
     
(森敏)

 

 

2017-03-26 21:56 | カテゴリ:未分類
原発事故で住民が避難したあとの民家の庭には、観賞用の草花の種が毎年稔っては散り、稔っては散り、雑草も交えていろいろな草花が繁茂している。その内の一つにコスモスがある(図1)。

 

       コスモスを刈り取ってきて、放射能を測ってみると、意外に花の部分にも強い放射能が検出された。そこでオートラジオグラフをとってみたら、見事に全身の放射能が撮像された(図2,図3)。コスモスの葉の幅はわずか2-3ミリと細いのだが、くっきりと写しだされた。
 
スライド1 
図1.民家の庭のコスモス 黄色い紙の上はこぼれ落ちたコスモスの種をセロテープに貼り付けたもの

 

       スライド1 
 
 
   
 
図2.図1のオートラジオグラフ。
赤丸内部は、落ちこぼれた種子をかき集めてセロテープに貼り付けたもの。

  
    
  

  
スライド2 
 
図3.コスモスのオートラジオブラフ。図1のネガテイブ像
 

 
 

 
 
表1。コスモスの部位別放射能濃度 
コスモス放射能jpeg  

 
   
  少し細かく組織をわけて放射能を測定したら、細い葉が一番強く汚染しているのだが、種子も茎と同ていどに高濃度に汚染されていた。図2や図3で、どの株も花の部分が強く汚染しているように見えるのは、花器には種子がごっちょりとついて放射線(ベータ線)が重なって撮像されているからである。図2と図3の左下に赤丸で囲んでいるのは、一つ一つの種子である。これら一粒ずつがくっきりと感光していることがわかる。つまり、これまでもこのWINEPぶろぐでも幾度となく述べてきたように、セシウムは次世代に移行する。
 
       現在 住民が避難して居ないので、コスモスは原発事故以来毎年タネを付けてはそれを周辺土壌に落下させて、また翌年に発芽させてきたことになる。コスモスは栽培種であるので、根からの養分吸収力(吸肥力)がつよく、根が浅いので絶えず表層の放射能汚染土壌から放射性セシウムを容易に吸収してきたものと思われる。避難する前の住民がカリを含む肥料をこの庭土に撒いていたとしても、5年間もこの庭で草花が生々流転(吸収枯死分解)を繰り返せば、すでにカリの効果も少なくなって野生に近い土壌条件になってきているのだろう。
 
 子細に見ればコスモスはいろいろ形態的な変異を起こしているに違いないのだが、いかんせん普段の正常な姿が小生の頭にはないので、異常かどうかがわからないのが、我ながら情けない。

 
       
(森敏)

2017-01-25 04:09 | カテゴリ:未分類
 

  これまでに複数回キク科の植物を採取してオートラジオグラフを撮ったことがあるのだが、どうもキク科はセシウムの地上部への移行が悪い(移行係数が低い)のではないかとずっと思っていた。

 

  1昨年の秋あちこちにキクが最盛期を迎えていたので、道ばたに一株旺盛にはえているきわめてありふれたキクをランダムに枝の部分から数本採取した。

   
 
図1.道路端のノジギク
スライド1 
     
       
 図2.図1のノジギクのオートラジオグラフ(数値はガイガーカウンターの値)
 
スライド2
    
 
 図3. 図2のネガテイブ画像
のじぎくネガjpeg  
 
     
   
スライド1 
表1. ノジギクの放射能
    
     
        
   これを台紙に貼り付けてガイガーカウンターであらためてベータ線量を量ると枝ごとにかなりのばらつきがあった(図1)。そこで実際にオートラジオグラフを撮ると、枝ごとにかなり濃淡が出た(図2、図3)。

          

   多分、ある枝に対応する根は可溶性の放射能を含んだ土壌に接しており、それを吸い上げたのだろう。一方、別の枝に対応する根は放射能が固着した土壌に接しており、セシウムを吸収しなかったのだろう。

            

   組織を部位ごとにわけて放射能を測定したら、表1 のようになった。葉 > 花 >茎 の順に濃度が高いのだが、オートラジオグラフでは一番花が強く感光しているように見える。これは全体を押し葉にしたので花が花びらやその他の生殖器官で折り重なって凝集しているので、多重に放射線を発してフィルム(IP-プレート)が感光しているからである。葉の部分でも折り重なっているところは濃く感光していることがわかる。
       
  植物は根が土壌中に深いか、浅いか。根の生長点や根毛が土壌の放射能に接しているかどうか。などの微妙な差異によって、道管を通って地上部の対応する組織まで放射能が到達する量が極端に変動することが明らかになった。すでに漠然と明らかになっていることだが、こんなにはっきりと差が出るとは予期していなかった。
     
  従って、いささか専門的な議論になるが、
植物による放射性セシウムの「移行係数」なるモノは、根がどっぷりと浸かった水耕栽培でしか評価できないと断言できる。すなわち:
移行係数=地上部の放射性セシウム濃度/水耕液の放射性セシウム濃度
この値は従来から土耕栽培やフィールドで測定されている
移行係数=地上部の放射性セシウム濃度/土壌の放射性セシウム濃度
よりも、はるかに高くなると考えられる。

   
      
   
    
(森敏)
   
     

付記1.植物学者の牧野富太郎はこのキクを郷里の土佐吾川郡川口村の仁淀川河畔で発見して、のぢきく(野路菊)と新称し、ラテン学名に自分の名 Makino を付した。すなわち、Chrisanthemum morifolium Ramat. var.spontaneum Makino と命名した。
しかし彼はその後全国を旅しているうちに、この菊がいわゆる「家植菊」と同種に属し、既知の「小菊」と酷似して区別できないことを知った。これが栽培されていくうちに好事家によって大輪の様々な園芸新種に改良されていったのであろう、と記している。つまり、のぢきく が原種に近い品種であると認識した訳である。
牧野富太郎は発見したこの野地菊の写生図を、以下のように牧野植物図鑑(北隆館)の第12図版に重要な発見として特別に載せている。
 
まきのにじぎくjpeg 

この写生図を見てもわかるように、牧野は根の形態には全く着目していない。
 
追記1: イネに関して今回の原発事故による放射能汚染土壌水田からサンプリングしたイネに関しては、『移行係数』は0.57-0.017と300倍にもなる、大きな幅のばらつきがある。
2016-08-26 11:52 | カテゴリ:未分類

浪江の農業用水路に野生の水生「セリ」が生え始めていたので、長靴で降りて、丁寧に数株を採取した。根は用水路の放射能汚染土壌によって直接外部汚染しても仕方がないけれど、地上部は水にたえず洗われているので、葉は外部被曝はなく内部被爆だけだろうと思って、それを確認したかったからである。

 

セリは水にぬれて新聞紙にびったりとくっついてきれいに葉の形状を保存するための乾燥が難しかったが、何とかやり遂げて(図1)オートラジオグラフを撮像した(図2)。

(図1) ミズセリ(原図)反射しているのはセロテープです。
スライド1

  
 (図2) 図1のミズセリの オートラジオグラフ (上から4分の3が撮像されています)
スライド2

結果は、根に付着した土壌が一番濃く撮っているが、予想外にセリの体のあちこちにも用水路の放射性土壌粉末がこびりついた汚い画像になった。もちろん葉の部分も内部被曝している。新聞紙による乾燥作業中、どうも「乾きにくくて、新聞紙からはがしにくいなー」と思っていたのだが、どうやらセリの葉の表面は粘土などを粘着する分泌物質によって目に見えないくらい薄く覆われているのかもしれない。

 

農業用水には大雨が降ったときに森林の表土や、溜め池などから、いつも細かい泥や砂が流れ込んでいるので、いくら用水の泥を掻き出して除染しても無駄である。これらはいずれ下流の阿武隈川から海に流れ出ているのである。

 

用水の上流の森林を除染しない限り、用水から田圃に汚染土壌が流れ込むので、水田の除染後の用水管理が重要である。過去の鉱山廃液からのカドミウム汚染土壌では、水田の土壌を剥離したあと山土で客土しても、また何十年かのちには、鉱山採掘残土の堆積場などから用水を通じてカドミウムが水田に蓄積していくだろうという確実な試算がある。放射性セシウムの場合でも、たとえイネ(水稲)には吸収されにくい「土壌固着」の放射性セシウムになっていても、水田稲作栽培期間中に農業用水が水口(みなくち)から順次田面に拡散していく過程で放射能が集積していく可能性が高い。福島県や農水省ではこのあたりの長期観測体制はできているのだろうか? 是非モデル圃場を数カ所確保して長期にわたる実証試験をしてほしいものである(ひょっとして、もうしているのかな?)。

    

     

 (森敏)
追記:このセリの根の部分を切りはなして、葉の部分のみを測ったら、以下の放射能値であった。
Cs-134:  25 Bq/kg
Cs-137:  153 Bq/kg
合計:   178 Bq/kg
ということで、食べられない。

FC2 Management