2016-12-20 16:25 | カテゴリ:未分類

   放射能汚染地域では、避難して人が入らないので、森林では樹木に様々なツル性植物が自由自在に繁茂しています。このツル性植物は、何らかの遺伝子が欠損しているために単独では重力に抗して空に向かって屹立できないので幹木に着生して上に伸びていくものと思われます(図1、図2)。(おそらく野生のツル性植物は宇宙線やトランスポゾンによる自然突然変異で、ジベレリン生合成系の遺伝子の変異株だろうと思われます。)       

              
  「
このツルアジサイは、名前のようにツルになってのびるアジサイで、貧弱ですがガクアジサイに似た花を咲かせます。付着根という細い根で、高木の幹や岩などにくっついて上っていきますが、付着根は水を吸う働きは無く、吸水はふつうの植物と同じに、地中にのびた根が行います」と言うことです。(付記1)
   

   現地の藪の中で、松の幹木に張り付いて高く高く昇っているいくつかのツル性植物をみて、これが松の木の樹皮などの表層に高濃度で付着している放射能を吸収しているのかどうかを知りたいと思いました。そういえば、これまで小生は着生植物などにあまり着目していませんでした。(よく言われることですが風景は本人がその気にならなければ{見れども見えず}ですね)

     

   そこで、このツルアジサイを松の木から丁寧に引っぺがして、実験室に持って帰り、押し葉乾燥後、オートラジオグラフを撮像しました。
  


スライド1 
図1.ツルアジサイ。ツルのあちこちに細い着生根がでている。下から上に向かっている。
    
    
スライド2


 

 図2.図1のオートラジオグラフ

   
   

スライド3 
 
 図3.図1の同じツルのもっと上の部分。下部に新芽が見られる。右上の部分は樹皮ごとはがれたもので、そこに着生根が食い込んでいる。ツルは左下から時計回りに先端に向かっている。
 
   
    

スライド4 
  
    
    


図4.図3のオートラジオグラフ。新芽や着生根が放射能で内部被曝(すなわち内部標識)されていることがわかる。
 

スライド6 
 
 図5。樹皮に食いついたツルアジサイの細い着生根部分の拡大図
    
    
  
   

スライド7 

 図6.図5のオートラジオグラフ。図4のネガテイブ画像の右うえの部分の拡大図。着生根はあまり強くは感光していない。樹皮は外部被曝の証拠であるホットパーテイクルが付着してつぶつぶに光っている。

    
     
 
 
表1 ツルアジサイの組織部位別放射能: Bq(ベクレル)/kg乾物重
ツルアジサイの放射能jpeg 
   
 

表1や図2,図4で見るように、ツルアジサイではツル性茎の部分の放射能濃度が最も高く、これは全部内部被曝によるものです。また、主ツルや分枝ツルから少しばかりちょろちょろ出ている付着根は葉やツル性茎と比べて圧倒的に放射能が低い。これらのことは、ツルアジサイが着生した松の樹皮から水やセシウムを吸収しているのではなく、松の根元の土壌からたちあがっている主ツル性茎の根そのものから、放射性セシウムを吸収して地上部に移行していることを意味しています。あちこちの付着根はただ我が身を松の幹に支えてもらうための「取っ手」にすぎないことを意味しています。

      

表1に見るように、ツルの放射能濃度が斯くも高いのは、降雨の時の松の樹幹流から松の根元の土壌や落ち葉や腐植層に流下拡散する放射能を、ツルアジサイが吸水とともに効率よく吸収するためではないかと思われます。ツル性植物は一般に鳥の巣材にも使われます。このようにしてツル性植物は放射性セシウムの森林での循環にゆっくりと人知れず関わっていくのだと思われます。

      

 
     
       

(森敏)
  

 付記1ミツバウツギの同定とコメントは若林芳樹(株アスコット)氏によるものです。ありがとうございました! 


 

2016-12-15 12:21 | カテゴリ:未分類
 

以前に、原発事故1年後のヒノキの放射能汚染について外部被爆を中心に報告しました。

   2012/05/24 : ヒノキの放射能被爆像

           

 原発事故後5年半以上経った現在のヒノキはどうなっているのでしょうか?
 

       現地で観察すると1本のヒノキのある枝には時々異常な数の種子を付けています(図1)。事故以来あちこちのヒノキをずっと観測しつづけているのですが、その法則性が今ひとつつかめていません。本来栄養組織である葉になるべきものが、発生の途中で何らかのきっかけで分裂異常が起こり、生殖器官である球果になる確率が高まったのではないかと思われます。
 



スライド2 
 
図1.異常な数の球果を付けたヒノキの枝(浪江町大堀地区)

   


     図2をみると、この2つの枝全体には、どこにも外部被爆を思わせる、放射能の黒い斑点がみられないので、このオートグラフの画像は全部内部被爆のセシウムによるものです。つまり原発爆発時に降下したセシウムが付着した樹皮から吸収されたものが、ヒノキの体内のどこかにストックされたものからと、当時土に降下したり、木の地上部全体が放射能によって被曝した、その放射能が、降雨による溶脱や樹幹流やで土に浸透した。そのセシウムが根から吸収されて、この枝にはるばると転流してきたものとしか考えられません。
   


 
スライド3 
 
 
 図2.図1.のオートラジオグラフ(ポジテイブ画像) 球果が強く内部被曝している。球果の中には種子が含まれているのでその放射能も積算されて感光している。(表1.参照ください)

 
 
スライド4 

 
  図3.図1のオートラジオグラフ (ネガテイブ画像)
 
  
  
 
   


表1.図1の植物を解体して部位ごとの放射能の濃度を測定したもの

スライド1    

  この枝全体を細かく解体して、組織ごとの放射能の濃度を測定すると、上記表1のようになりました。放射能濃度の強い順に 球果の殻>新葉>種子>枝>旧葉 となりました。種子の値が結構高いことに驚かされます。ヒノキは旧い葉から枯れていくので、その過程で、旧葉のセシウムがカリウムとともに徐々に枝を通って新葉や種子に転流していると考えられます。(今はやりの「オートファジーという現象」ですね)

     

球果は種子が中で育成されていく容器なので、そこにいったん入ったセシウムは殻を形成して固着して再度動くことはありません。ですので、この殻の部分はセシウムがたまる一方であると考えられます。だから一番放射能濃度が高いのでしょう。一方、種子はセシウムをため込みながら(実際にはカリウムをため込んでいるのですが、セシウムがあるとそれも間違ってため込んでしまうのです)同時に来るべき種子発芽の時の栄養源として、でんぷんやタンパクを合成してため込んでいく必要があるのでので、セシウムの濃度が次第に薄まるものと考えられます。

    

どんどん細胞が分裂と伸張を繰り返して組織を大きくしている新葉もカリウムの要求量が高いので同じ挙動を示すセシウム濃度も高くなっているのです。

   
 
(森敏)

付記:ヒノキの2014年の像については
「放射線像 放射能を可視化する」(皓星社)の92ページ-94ページに載せています。この像では、被曝初期のものであるので、枝の基部の外部被曝が顕著です。 


2016-12-08 14:14 | カテゴリ:未分類
  小生は年のせいで(:今年末から後期高齢者なかまに突入した)、放射能汚染現地調査の途中では、結構頻繁に水分を補給している。そうしないと、足の筋肉への血流が悪くなるためか、時々足がしびれるからである。だから、必然的に頻繁に尿意をもようすので、自動車を降りて道ばたから少し林内に入って、尾籠(びろう)な話で恐縮だが、立ちションベンをする羽目になる。そのときは、必然的にあたりの植生をじっと眺めることになる。もちろんかなりの放射能を浴びながら。そういうときにも結構あたらしい発見がある。
  
     
       飯舘村の 「あいの沢」 は、本来はキャンプ場であったのだが、いまは人っ子一人いない。昨年夏にここでやっと除染作業が行われた。除染といっても道路と道の両側の20メートル幅の山林の下草や土を深さ15センチばかりをとりのぞくのだから、どうしても地下茎で連なっている一部のシダ類などは、のぞき切れていない所がある。そこまで徹底的にやると作業に時間がかかって、だから除染作業員の労賃がかかるので、しかたがないからだろう。一応地表面が毎時0.23マイクロシーベルトにまで低下することを目指しているようではあるが。
  
  昨年の春、例によって小便をすべく林内に入った。数メートル入った林の中の空間線量は毎時4.5マイクロシーベルトであった。そこでは芽を出し始めたばかりの丈の低いワラビが群生していた。
      
  ワラビのいくつかを根から切り取って研究室に持ち帰って、ガイガーカウンターで測定してみると、意外に葉のベータ放射線量が高いので、それをオートラジオグラフに取ってみた(図2)。また、組織を各部位にわけて放射能を測定した(表1)。
 

 
スライド4 
 
 図1.春先の若いワラビの写真

 
スライド5 
図2.図1の若いワラビのオートラジオグラフ
   
 
 


  表1 ワラビの各部位の放射能(ベクレル/Kg乾物重)
 ワラビjpeg  



       図2で定性的に,表1で定量的に明らかなように、シダも未展開葉では若干放射性セシウム含量が高い。しかし、次の図3のように葉が全面展開したものでは、図4、図5で見るように、枝の最先端の葉は少し他より放射能が高いようだが(図5のネガテイブ画像で特に理解されると思う)、比較的放射能は全葉に均一に分布しているように見える。また、一見、左側の茎のみの部分が強く感光しているように見えるが、これは茎が葉に比べて数倍の厚みがあるので、放射能が重なって感光しているためである。


  
 
スライド1 
 図3.浪江町で採取したシダ
 
スライド2 
 
 図4.図3のシダのオートラジオグラフ ポジ画像
 
 
スライド3 
 図5.図3のートラジオグラフ。ネガ画像
 
 
  
地下茎の多年生のシダ類(ワラビはシダ類の一種)はタケノコと同じように地下系が土壌の表層直下数センチあたりを縦横にうねっていて、根がそのあたりまでに大部分が集積している「土壌の可給態の放射能」を吸収して地下系を通じてあちこちの新芽に直ちに分配輸送されるので、いつまでも地上部の放射能が高く推移する可能性が高いのである。


  

 
(森敏)
 
付記1:タケノコについては以下のブログを参照ください。
 
 2016/05/20 :
まだタケノコは要警戒: 給食のタケノコご飯から基準超のセシウム

 
付記2:シダ類の同定には 「フィールド版 写真でわかるシダ図鑑  池田怜伸 著」 トンボ出版 を参考にした。


 
 
 
  
2016-11-22 22:29 | カテゴリ:未分類
 
少し論文調になりますが、赤松が奇形になる理由について、以下に説明いたします。
    
  浪江町の津島高校分校は今は誰もいませんが、2011年3月11日東日本大震災の後に起こった、東電福島第一原発事故のあと、浪江町よりも南の市町村の人たちが、避難してきて何日間か宿泊したところです。浪江町の住民は彼らを炊き出しで支援し、自分たちもそこでかなりの被ばくをしたはずです。
     
  ここの校庭は、当時の状況を現状から考察するに、更地にして新しく山土で均平にされて余り年月がたっていなかったと思われます。3月15日にはその更地に近い山土の校庭にかなりの放射能が降雨とともに降り注いで、空間線量は毎時20マイクロシーベルト以上になったのではないかと思われます。現在毎時5マイクロシーベルト前後です。
    
  当時何も生えていなかったその校庭には現在東側の山から次第に赤松が侵入してきて、旺盛な生育を示しております。この山土は酸性で貧栄養なので、松やススキしか生えないようです。(図1)

  

   
   
スライド1 
  (図 1) 東側の斜面から赤松が優先的にランダムに侵入してきている校庭

     

    この山肌の斜面はほとんどアカマツが優先種であり、その松の10-20%ばかりが主茎になんらかの奇形を呈しています。先端部が大きく二股や3つ股に分かれて伸長しているのです。普通は一本だけがすくっと伸びるのですが。(図2、図3、図4)
  
  
 


スライド2 
(図 2) 赤松の群生地と化した東側の斜面

  
  


goyoumatsu jpeg 

(図 3) 主茎が3つ又になっている (中央部分の3本)

   

  

スライド3 
 
(図 4) 分枝が異常に多く太い枝が3本見える。普通は5-6本。
 
    
   そこで、図3の3本の奇形主茎のうち、一本を切り取ってラジオオートグラフを撮ってみました(図5)。すでに先端部は8本の幼芽をつけています。これらが次の枝や松かさになっていくのです(図7)。
    

   

スライド1 
 


(図 5) 3本の奇形枝の1本を採取した。
   
     





スライド1 
 
 


(図 6) 図5のオートラジオグラフのポジテイブ像(左)と、ネガテイブ画像(右)。 先端の葉芽の画像が圧倒的に強く放射線で感光していることがわかる。
 
   

  

スライド4 

 


  (図 7) 先端部分の拡大図  すでに8つの新芽が付いている。

      
   


 スライド5

 
 
(図 8)   図6(右)のネガテイブ画像の拡大図。葉芽が鮮明に濃く映っている。
  
     

    図6、や図8 で定性的に明らかなように、マツの幼芽はほかの組織に比べて圧倒的に放射生セシウムが濃縮しやすい場所と考えられます。事実、この枝の組織をばらしてNaIスペクトロメーターで放射性セシウムを測ると、以下のような数値となりました。新芽は1キログラム乾物重あたり13万ベクレル以上(!!)を含んでおり、これはほかの葉や幹の10倍以上の濃度です (表1)。
             
  この高く濃縮した放射能による内部被ばくと、毎時数マイクロシーベルトの外部被ばくで、ここの赤松はいまだに新芽の細胞の奇形分化が進行していると考えられます。


    
 


     表1 赤松の枝の部位別放射能 (Bq/kg乾物重) 
 
   
五葉松の放射能jpegブログ用 
 
    


   

(森敏)


 
付記1: ネガテイブ画像は加賀谷雅道カメラマン制作によるものです。NaIスペクトロメーターによる測定は広瀬農・助教(東大農学生命科学研究科)の協力によるものです。
 

付記2: 関連記事を以下のWINEPブログに載せています。クリックしてご参照ください。

2016-10-13 20:50 | カテゴリ:未分類

スライド2   
図1。花を付けたイラクサ

 
スライド1
 
図2。図1のオートラジオグラフ。花が強く内部被爆していることがわかる。

  さきに、2015年秋のイラクサの植物体の「放射線像」を示したが

   2016/01/01 : イラクサ考 (ご参考)

その1ヶ月後にまた浪江町に行くと、今度は道ばたに旺盛に繁茂したイラクサのすべてが花を付けていた(図1)。これを採取して持ち帰ってガイガーカウンターでサーベイすると、意外にもふつうの草花よりも葉に比べて花の部分に高い放射能が検出された。これはイラクサの特徴だと思われた。そこで、まずオートラジオグラフを取り、NaIスペクトロメーターで放射能を測定したところ、放射線像(図2)で定性的に検出されたように、「花」の部分に最も高く非常に高い放射能が検出された(表1)。イラクサは一年生だと思われるので、イラクサは根から吸収した放射性セシウムを秋になって葉から生殖器官に積極的に転流していると考えられる。この転流現象は先日WINEPブログで述べたように、穀物の場合の転流現象と同じと思われる。

 2016/10/09 : 「オートファジー」は穀物生産に必須の機能である (ご参考)
    
   

                表1

Bq/kg

  Cs-134  Cs-137 合計

イラクサ花

2063

10952

13034

イラクサ葉

821

4365

5182

イラクサ茎

1479

7864

9345

 
  
 
(森敏)
 

FC2 Management