2017-01-21 22:11 | カテゴリ:未分類
以下安倍首相の施政方針演説の教育支援の部分の抜粋です。
相変わらず総花的だが、この部分は素人目には官僚の作文としてはよくかけていると思う。
予算的裏付けがあって実現すれば一歩前進であることは間違いない。


ーーーーーー以下抜粋ーーーーー

(希望出生率一・八)
 一億総活躍の最も根源的な課題は、人口減少問題に立ち向かうこと。五十年後も人口一億人を維持することであります。長年放置されてきた、この課題への挑戦をスタートします。
 「希望出生率一・八」の実現を目指します。
 一人でも多くの若者たちの、結婚や出産の希望を叶えてあげたい。
 所得の低い若者たちには、新婚生活への経済的支援を行います。不妊治療への支援を拡充します。産前産後期間の年金保険料を免除し、出産の負担を軽減します。妊娠から出産、子育てまで、様々な不安の相談に応じる「子育て世代包括支援センター」を、全国に展開してまいります。
 仕事をしながら子育てできる。そういう社会にしなければなりません。
 病児保育の充実など、子ども・子育て支援を強化します。目標を上積みし、平成二十九年度末までに合計で五十万人分の保育の受け皿を整備してまいります。返還免除型の奨学金の拡充、再就職準備金などの支援を行い、九万人の保育士を確保します。「待機児童ゼロ」を必ず実現してまいります。
 大家族による支え合いを応援します。二世帯住宅の建設を支援します。URの賃貸住宅では「近居割」を五%から二十%へと拡大します。新しい住生活基本計画を策定し、三世代の同居や近居に対する支援に本格的に取り組んでまいります。
 子どもたちの未来が、家庭の経済事情によって左右されるようなことがあってはなりません。
 ひとり親家庭への支援を拡充します。所得の低い世帯には児童扶養手当の加算を倍増し、第二子は月一万円、第三子以降は月六千円を支給します。
 幼児教育無償化の実現に一歩一歩進んでまいります。所得の低い世帯については、兄弟姉妹の年齢に関係なく、第二子は半額、第三子以降は無償にします。
 高校生への奨学給付金を拡充します。本年採用する大学進学予定者から、卒業後の所得に応じて返還額が変わる、新たな奨学金制度がスタートします。希望すれば、誰もが、高校にも、専修学校、大学にも進学できる環境を整えます。
 いじめや発達障害など様々な事情で不登校となっている子どもたちも、自信を持って学んでいける環境を整えます。フリースクールの子どもたちへの支援に初めて踏み込みます。子どもたち一人ひとりの個性を大切にする教育再生を進めてまいります。
 日本の未来。それは、子どもたちであります。子どもたちの誰もが、頑張れば、大きな夢を紡いでいくことができる。そうした社会を、皆さん、共に創り上げていこうではありませんか。
 
ーーーーー 
  
付け加えておくと、残念ながら子ども達や青少年に夢をどう与えるかが完全に欠落している。

未来への人材育成のための投資を叫ぶなら、安倍首相は素朴に謙虚にノーベル賞学者ともっと頻繁に交流した方が良いんではないか。これまでの彼の発言からは、「科学とはなんぞや、技術とはなんぞや」を学んだ形跡が全く感じられないからである。
 
話は少しそれるが
今回の施政方針演説では、エネルギー問題、原発再稼働問題から完全に逃げている。今国会の争点にしたくない姿勢がありありだ。 残念ながらマスコミも、彼の隠ぺい戦略に引っかかっている。 原発問題では、安倍首相は、よく勉強した小泉純一郎元首相からも謙虚に学んだ方がいい。小泉の呼びかけに対しては、無視し続けているようだが。



(喜憂)
追記:東京都の小池知事は本日(1月26日)の都の新年度予算案の記者会見で
上記の保育士問題や授業料無償化などで、国に先行して新基軸を打ち出している。7月の都議選に対しての対策でもあるのだが、なかなかはしっこいと思う。
2017-01-04 11:50 | カテゴリ:未分類
スライド2 


図1。直径10センチのキノコ。山土が砂質土壌で、ミネラルの吸着力が低いと思われる。地表面の放射線量は 毎時7.79マイクロシーベルト(ビニールが反射して見にくいですが)。 津島高校分校校庭にて。

 

 

キノコは放射性セシウムの吸収蓄積能力が高いので、いまでも福島とその隣県の自治体では野生のキノコは100ベクレル/kg新鮮重 以上のものが検出され続けており、販売は禁止されている。(付記1)

    

チェリノブイリ原発事故以降の文献でもヨーロッパばかりでなく、その後25年経った日本でもCs-137が有意に100ベクレル/kg新鮮重 を越えるものが、今回の福島原発事故が起こる以前にもあった。このようにキノコの自然環境の中でのセシウム吸収力はしぶといのである。

      

その一方では、放射性セシウム吸収力の強いキノコは原発事故由来の放射性銀(Ag-110m)の吸収力も強いことがチェリノブイリ以降の文献でもいくつか実証されている。(付記2)

        

小生らは、ずっと昆虫を中心に放射性銀(Ag-110m)の動向を追跡調査している。(付記3)

2016年には、ジョロウグモ以外のほとんどの昆虫では、放射性銀(Ag-110m)は消滅している。それは物理的な半減期減衰によるものと、銀の土壌への吸着不溶化によるものである。(付記3)

        

しかし、昨年2カ所でサルの糞を偶然採取したのでそれを測定したら、いずれも放射性銀(Ag-110m)を含んでいた。いったいサルは何を食べているからその糞に放射性銀が多いんだろうか?と、ずっと疑問に思っていた。
        
スライド1 
図2. サルの糞を乾燥させたもの (加賀谷雅道カメラマン提供)(表1 サルの糞 昼曽根 に対応)
 
スライド1 
 図3. 上:図2のオートラジオグラフ(ポジテイブ画像)。下:図2のネガテイブ画像
               
        最近浪江地区の松を採取した津島高校分校のグランドにあちこちはえている大きなキノコ〔図1〕を2日間にわたってゲルマニウム半導体で測定したら、わずかであるが放射性銀(Ag-110m) が検出された (表1。最下段の赤字)

               

  そこで思うのだが、猿は無意識にビタミンDの供給源としてキノコを大量に食べるのではないだろうか?(猿のクル病って聞いたいたことがないですよね。) しかしサルは消化しきれなくて繊維質を大部分排泄する。そのとき不要な放射性銀(Ag-110m)も吸収されずに濃縮されて排泄されるのではないだろうか? 図3の上下のオートラジオグラフを見ると、サルの糞 (表1 サルの糞 昼曽根 に対応)の中にはいくつかの際だって放射能が強いたべものの残査があることがわかる。これが野生のキノコかもしれない。
                   
       一度、いたずらに、どこかの動物園でサルにキノコを投げて、嗜好性を見てみようと思う。
       
      
         
      表1.各所のサルの糞とキノコの放射能 
糞とキノコjpeg 

     
(森敏)
           
    

(付記1)2013/11/23 : 放射能汚染キノコ2態 (クリックしてください)

(付記2)それはおそらくキノコの持つカリウムトランスポーターのどれかがごく微量のセシウムも吸収するためであるとおもわれる。(ただし、キノコからこの特異的な高親和性のカリウムトランスポーターをクローニングしたという例は小生は知らない)

(付記3)Hiromi Nakanishi et al . Proceedings of Japan Academy  Ser. B 91 (2015)160-174
      

 

 

2016-10-04 17:25 | カテゴリ:未分類

【大隅良典さんノーベル医学・生理学賞受賞】快挙に中韓ビックリ 韓国「オタク文化」例に「日本に学ばねば」 中国「どんな秘密があるのか…」大隅良典・東京工業大栄誉教授(71)がノーベル医学・生理学賞を受賞したニュースは、APやロイターなど海外の通信社も速報した。
   

 韓国の聯合ニュースは、自然科学分野で日本人のノーベル賞受賞が相次ぐ背景として、「日本特有の匠(たくみ)の精神」や一つの分野に没頭する「オタク文化」の存在を挙げ、「政策や文化といったさまざまな側面の結晶だといえる」と分析した。韓国ではこの分野で受賞がないことから、「日本の政策に学ばねばならない」という韓国の研究者の意見も伝えた。

 中国では北京紙、新京報(電子版)が大隅氏の受賞を報じた上で、「ここ数年、日本の科学者によるノーベル賞受賞が続出している。どんな秘密があるのだろうか」とした。

 英BBCテレビ(同)は「大隅氏の業績はがんからパーキンソン病にいたるまで、何が病気を悪化させるかを説明する助けになった」と重要性を強調。米CNNテレビ(同)は、「オートファジーの存在は1960年代から認識されていたが、大隅氏が酵母を用いた先駆的な実験を行うまで、仕組みがほとんど解明されていなかった」と伝えた。

    

 
  きわめて専門的になりますが、以下に学士院賞受賞時と京都賞受賞時の大隅良典先生の研究内容と、国際賞受賞時の挨拶、をホームページから転記しておきました。
   

     

日本学士院賞審査要旨(2006)
  

理学博士大隅良典氏の「オートファジーの分子機構と生理機能の研究」に対する賞審査要旨
 

分子生物学では、セントラルドグマ確立以来、遺伝子発現すなわちタンパク質の「合成」のしくみの解明に多くの努力が割かれ、タンパク質の「分解」の問題は、受動的でそれほど大きな生物学的な意味を持たないのではないかと長らく考えられてきた。しかし近年、生命が持つ遺伝子の相当な部分がタンパク質やその複合体の分解に関わっており、分解も、合成に匹敵するほど大切であることが認識されつつある。生命が絶えざる合成と分解のバランスの上に成り立っていることから考えればむしろ当然のことであろう。五〇数年前に細胞内小器官「リソソーム」が発見されて以来、タンパク質の分解はこのコンパートメントの中で行われていると一般的に考えられてきた。しかし現在では、細胞内タンパク質分解は、ユビキチン/プロテアソーム系とリソソーム系の二つに大別することができ、両者が機能分担を行っていることが明確になっている。前者が厳密な識別に基づく選択性の高い分解であるのに対し、後者はむしろ非選択的でバルクな(大量な)分解を担っている。

リソソーム内に分解基質を送る過程は、自己を食すると言う意味の「オートファジー」とよばれる膜現象からなることが示されてきた。しかし様々な困難からその分子機構は全くの謎であった。大隅氏は、酵母細胞が栄養飢餓条件にさらされると、リソソームと相同な分解コンパートメントである「液胞」で大規模なタンパク質分解が誘導されることを顕微鏡観察によって発見した。そして、その後の電子顕微鏡による解析から、これが高等生物で知られていたオートファジーと同一の膜現象であることを証明した。次に、酵母の系の優位性を生かして遺伝学的な解析に取り組み、オートファジーに欠損を持つ多くの変異株を分離し、一四個の関連遺伝子(ATG遺伝子群)を同定することに成功した。その後に発見されたオートファ

ジーに必須の遺伝子が三個のみであることから、大隅氏らの当初の戦略が極めて優れていたことが窺える。大隅氏は、引き続き、ATG遺伝子群のクローニングに着手し、それらがコードするタンパク質(Atgタンパク質群)を同定したが、ほぼ全てが新しい分子で、それらの機能の推定は困難であった。しかし数年の間に大隅研究室ではこれらAtgタンパク質に関する重要な発見がなされた。(1)Atg12がユビキチン様タンパク質で、二つの酵素Atg7Atg10を介してAtg5と共有結合体を形成する。(2)Atg8もユビキチン様タンパク質で、Atg7により活性化された後、Atg3に転移し、膜リン脂質の一つホスファチジルエタノールアミンと結合する。(3)Atg1はタンパク質キナーゼ活性を有し、この活性がオートファジーに必須であること、(4)Atg14は、オートファジーに必要な特異的PI3キナーゼと複合体を形成すること、などである。また、栄養飢餓の関知にTorと呼ばれるキナーゼが関わることも明らかにした(mTORは動物栄養センシングに関連して注目されている)。オートファジーの最大の謎は細胞質の一部やオルガネラ

をまず膜が取り囲んで隔離する膜現象にある。上記の反応系は全てこの過程(オートファゴソーム形成)に関わっている。オートファジーは真核細胞の基本的な機能の一つであり、発見されたATG遺伝子群は酵

母からヒト、高等植物にまで広く保存されていることが明らかとなった。これらの機能解明は、オートファジーの機構解明に留まらず、細胞内の膜動態の分子機構を理解する上でも重要な知見を与えると

期待されている。オートファジーには未だ多くの謎が隠されているが、大隅氏らによるATG遺伝子群の同定を契機として、多くの生物種でオートファジーが確認され、また、タンパク質分解の破綻が様々な病気や老化などにも関わっていることが明らかになってきた。現代の人間社会には資源のリサイクルシステムの構築が求められているが、細胞は自らのタンパク質を分解して必要なタンパク質を合成するという見事

なリサイクルシステムを獲得したものと考えられる。オートファジーの重要性は、今後も、細胞内有害物質の除去機構、細菌感染、抗原提示、老化など様々な形で明らかにされるであろう。このように本研究分野の活性がいっそう高まる中、大隅氏は一貫してオートファジーの分子機構の解明に正面から取り組んでおり、他の追随を全く許さない研究を続けている。また、大隅氏は、Gordon Research Conferenceなど主要な国際会議から基調講演に招かれ、本分野における国際的なリーダーシップを発揮しており、平成一七年には藤原賞を受賞している。

   

  
 

 

京都賞の受賞理由
     

細胞の環境適応システム、オートファジーの分子機構と生理的意義の解明への多大な貢献
     

大隅良典博士は、細胞が栄養環境などに適応して自らタンパク質分解を行うオートファジー(自食作用)に関して、酵母を用いた細胞遺伝学的な研究を進め、世界をリードする成果をあげた。オートファジーは、1960年初頭に、動物細胞内の食胞として知られているリソソーム中に細胞質成分であるミトコンドリアや小胞体が一重膜で囲まれて存在していることから提唱された概念で、細胞内成分や細胞内小器官がリソソームに取り込まれて分解を受ける過程を意味する。その後、多種類の細胞やいくつかの臓器でこの現象が報告されてきたが、オートファジーの分子メカニズムや生理的意義は不明なままであった。大隅博士は、出芽酵母Saccharomyces cerevisiaeで空胞の機能を研究していたが、1992年、タンパク質分解酵素B欠損株を低栄養培地に曝すことにより空胞中に一重膜で囲まれた細胞内小器官成分が出現すること、即ち、酵母でオートファジーが誘導できることを発見した。同博士は、ついで上記現象を利用して、タンパク質分解抑制と栄養飢餓によってもオートファジーが誘導されない多数の変異株を同定した。博士の酵母におけるオートファジーと変異株の発見は、オートファジーの分子機構解析に道を拓いたものである。これが基盤となり、これまでオートファジーに関係する数十の分子が同定され、これらの機能解析により、飢餓などの刺激に応じて、どのようにして細胞内成分や細胞内小器官を囲む新規の膜構造が形成され、これがリソソームに融合するかの道筋が明らかになりつつある。

酵母におけるオートファジー関連分子の発見は、哺乳類を含む動物細胞でのオートファジー関連分子の同定につながり、これらを利用して、動物におけるオートファジーの多様な生理的意義が多くの研究者により明らかにされた。すなわち、オートファジーが出生に伴う飢餓状態への適応に不可欠であること、オートファジーが神経での異常タンパク質の蓄積を防ぎ神経細胞死を防止するために必要であること、心臓の収縮力を維持するためにオートファジーを伴う代謝回転が不可欠であることなどがある。

大隅博士の貢献は、生体の重要な素過程の細胞自食作用であるオートファジーに関してその分子メカニズムと生理的意義の解明に道を拓いたものとして高く評価されるものである。

以上の理由によって、大隅良典博士に基礎科学部門における第28(2012)京都賞を贈呈する。

    
 
 

 国際生物学会賞での挨拶(2015)
 

(一部略)

私はこれまで機会あるごとに述べて参りましたが、私自身、様々な偶然と出会いに助けられて、研究者としての細い細い道を今日まで歩んで参りました。東京大学教養学部の今堀和友先生の下で学び、京都大学、東京大学農学部、ロックフェラー大学留学を経て、東京大学理学部安楽泰宏教授のもとで研究をする機会を得ました。その後、東京大学教養学部、基礎生物学研究所にお世話になり、現在も、東京工業大学で大変恵まれた環境を頂いて研究を続けています。今日科学研究は激烈な競争があるというのも事実ですが、私は元来競争が苦手で、人のやらないことをやりたいという思いで研究を進めて参りました。

   
私は細胞内のタンパク質の分解の機構に興味を持ち、1988年以来28年間に亘ってオートファジーと呼ばれる細胞内の分解機構の研究を進めて参りました。生命体は絶えまない合成と分解の平衡によって維持されています。合成に比べて分解の研究は興味を持たれず、なかなか進みませんでした。

   
私は一貫して小さな酵母という細胞を用いて、オートファジーの謎の解明を目指し、関わる遺伝子群とその機能を解析して参りました。オートファジーに関わる遺伝子の同定を契機として、今日オートファジーの研究は劇的な広がりを見せ、高等動植物の様々な高次機能に関わっていること、そして、様々な病態にも関係していることが次々と明らかになって参りました。すなわち、分解は合成に劣らず生命活動には重要であるということが次第に認識されて参りました。しかし、まだオートファジーの研究には沢山の基本的な課題が残されています。私は残された研究時間で今一度原点にたちかえって、「オートファジーは何か」ということに向かいたいと思っています。また、近い将来オートファジーのさらなる機構の解明が進み、細胞の一層の理解のもとに、病気の克服や健康の増進などの研究がさらに進むことを心から願っています。

   
いうまでもなく現代生物学は一人で進められるものではありません。私のこれまでの仕事も、30年近くに亘る沢山の素晴らしい研究仲間のたゆまぬ努力の賜物でもあります。また素晴らしい共同研究者にも恵まれました。心から彼らに感謝の意を表するとともに、彼らとともにこの栄誉を分かち合いたいと思っております。
   
これまで私を支えてくれた今は亡き両親、妻萬里子と家族にも心から感謝をしたいと思います。

最後にこれから生物学を志す若い世代に向けて、
   
私達の周りには、まだ沢山の未知の課題が隠されています。素直に自分の眼で現象をみつめ、自分の抱いた疑問を大切にして、流行や様々な外圧に押し流されることなく、自分を信じて生命の論理を明らかにする道を進んで欲しいと申しあげたいと思います。
   
私も微力ながら残された時間を、効率や性急に成果が求められる今日の研究者を巡る状況が少しでも改善し、生き物や自然を愛し、人を愛し、豊かな気持ちで研究ができる環境というものの実現に助力したいと思います。
本日はどうも有り難うございました。

       
      


       
  大隅先生ご自身が選んでいる主要な業績は以下のとおりです。
  

01. Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. (1992)

Autophagy in yeast demonstrated with proteinase-deficient mutant and its

conditions for induction. J. Cell Biol., 119, 301-311.

02. Tsukada, M., and Ohsumi, Y. (1993) Isolation and characterization of

autophagy-deficient mutants in Saccharomyces cerevisiae. FEBS Lett.,

333, 169-174.

03. Baba, M., Takeshige, K., Baba, N., and Ohsumi, Y. (1994) Ultrastructural

analysis of the autophagic process in yeast: Detection of autophagosomes

and their characterization. J. Cell Biol., 124, 903-913.

04. Matsuura, A., Tsukada, M., Wada, Y., and Ohsumi, Y. (1997) Apg1p, a

novel protein kinase required for the autophagic process in Saccharomyces

cerevisiae. Gene, 192, 245-250.

05. Baba, M., Ohsumi, M., Scott, S. V., Klionsky, D. J., and Ohsumi, Y. (1997)

Two distinct pathways for targeting proteins from the cytoplasm to the

vacuole/lysosome. J. Cell Biol., 139, 1687-1695.

06. Mizushima, N., Noda, T., Yoshimori, T., Tanaka, T., Ishii, T., George, M.

D., Klionsky, D. J., Ohsumi, M., and Ohsumi, Y. (1998) A protein

conjugation system essential for autophagy. Nature, 395, 395-398.

07. Mizushima, N., Noda, T., and Ohsumi, Y. (1999) Apg16p is required for

the function of the Apg12p-Apg5p conjugate in the yeast autophagic

pathway. EMBO J., 18, 3888-3896.

08. Kirisako, T., Baba, M., Ishihara, N., Miyazawa, K., Ohsumi, M., Noda, T.,

and Ohsumi, Y. (1999) Formation process of autophagosome is traced

with Apg8/Aut7p in yeast. J. Cell Biol., 147, 435-446.

09. Kirisako, T., Ichimura, Y., Okada, H., Kabeya, Y., Mizushima, N.,

Yoshimori, T., Ohsumi, M., Noda, T., and Ohsumi, Y. (2000) The

reversible modification regulates the membrane-binding state of

Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting

pathway. J. Cell Biol., 151, 263-275,

10. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda,

T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000) LC3, a

mammalian homologue of yeast Apg8p is processed and localized in

autophagosome membranes. EMBO. J., 19, 5720-5728.

11. Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara,

N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T.,

Ohsumi, Y. (2000) A ubiquitin-like system mediates protein lipidation.

Nature, 408, 488-492

12. Mizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y.,

Suzuki, K., Tokuhisa, T., Ohsumi, Y., and Yoshimori, T. (2001) Dissection

of autophagosome formation using Apg5-deficient mouse embryonic stem

cells. J. Cell Biol., 152, 657-668.

13. Suzuki, K., Kirisako, T., Kamada, Y., Mizushima, N., Noda, T., and

Ohsumi, Y. (2001) The pre-autophagosomal structure organized by

concerted functions of APG genes is essential for autophagosome

formation. EMBO J., 20, 5971-5981.

14. Suzuki, K., Kamada, Y., and Ohsumi, Y. (2002) Studies of cargo delivery

to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae.

Develop. Cell, 3, 815-824.

15. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., and Ohsumi, Y.

(2004) In vivo analysis of autophagy in response to nutrient starvation

using transgenic mice expressing a fluorescent autophagosome marker.

Mol. Biol. Cell., 15, 1101-1111.

16. Ichimura, Y., Imamura, Y., Emoto, K., Umeda, M., Noda, T., and Ohsumi,

Y. (2004) In vivo and in vitro reconstitution of Atg8 conjugation essential

for autophagy. J. Biol. Chem., 279, 40584-40592.

17. Yoshimoto, K., Hanaoka, H., Sato. S., Kato, T., Tabata, S., Noda, T., and

Ohsumi, Y. (2004) Processing of ATG8s, ubiquitin-like proteins, and their

deconjugation by ATG4s are essential for plant autophagy. Plant Cell, 16,

2967-2983.

18. Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori,

T., Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004) The role of

autophagy during the early neonatal starvation period. Nature, 432, 1032-

1036.

19. Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion (Nakatogawa, H., Ichimura, Y. and Ohsumi, Y.), Cell 130: 165-178, 2007

 

   

     
    
(森敏)

2016-09-07 12:25 | カテゴリ:未分類
 スライド1 
図1.蛇のように茎が太くのたうつアザミの茎
  




   

スライド2 
 図2.指で挟んでいるこの茎の先端にはつぼみが6つくっついている。
 
 

   

 
 スライド3

図3.根は意外と浅く簡単に土壌から引き抜けた。手前は小生の右足の靴。近くの他のアザミに比べて草丈は低く少し「倭化」しているように思われる。   

          

    
  関東の野山はアザミの最盛期である。散歩がてら観察していくと、実に奇妙なアザミを見つけた。まるで2,3匹のヘビが鎌首をもたげているようなのである(図1)。茎の根元が非常に太く、よく数えてみると茎の頭の先端が寸詰まりで、そこに蕾や花が、1つ、2つ、3つ、4つ、6つなどとついている。基本は3つの蕾のようである。明らかに帯化奇形である。
茎が伸びるにしたがって、分枝の位置が寸図まりになって行って、ついに蕾や花が集合した集合花になっている(図2)。

        

「アザミ」研究の権威である国立科学博物館の名誉研究員・理学博士・門田裕一氏の分類(https://www.kahaku.go.jp/research/db/botany/azami/search_word.html)を逐一検討したら、このアザミによく似たものにエチゼンオニアザミがあった。門田氏によれば、頭が2つばかり合体したアザミは珍しくはないということである。だから門田氏の分類の基準には、茎の先端の集合花の合体の数などは問題にしていないようである。

      

しかし福島原発事故以来、関東の帯化タンポポをこの5年間ずっと観察してきた小生の視点からいうと、このアザミの集合蕾(花)を持つ形質はいずれ進化的に固定して、新種になって行くのではないかと思われる。現在アザミの遺伝子については、どこまで読まれているのかわからないが、帯化に関する遺伝子(fas)はおそらく劣性ホモ遺伝子で、それが環境によって、変異を起こして、表現型が帯化として顕在化したものと思われるのである。

     

小生が見つけた変異種はすでに平均3つの集合花をつけるようになっているので、もし6つ以上の花をつけているアザミを見つけたら、小生が2014年に一番最初にこのようなアザミ株を見つけた場所である軽井沢の雲場池湖畔

2014/09/08 : 「6頭」の奇形アザミを見つけた

にちなんで「カルイザワアザミ」と名命し(門田氏によれば最初に見つけた場所で命名しているようなので)、俗称「クニコアザミ」と呼んでください。むろん牧野富太郎の「スエコザサ」にちなんだものです。自意識過剰老人の恥も外聞もないきざな話で恐縮です。

 

       

(森敏)

付記1: これまで観察してきた「帯化タンポポ」の場合は2頭のもの以外は、蕾が集合して合体して集合花になってしまっているものが大部分です。

タンポポの多様な奇形花房発見!! :植物に対する放射線の影響(II)
   

付記2:よく知られているようにいろいろな品種のケイトウ(鶏頭)の花は帯化遺伝子の変異が固定したものです。劣性ホモのfas遺伝子の対立遺伝子が二つとも欠失したか二つとも変異したものが園芸品種として選抜されたものです。

     

付記3: わが郷里高知の敬愛する牧野富太郎博士は積年の苦労を掛けた妻「寿衛子」にちなんで新しく発見した笹の品種を(スエコザサ)と命名しました。
     
付記4:門田氏が分類したアザミの中で唯一「コイブキアザミ」の蕾が、画像で判別する限り3頭の集合蕾になっているのですが、門田氏はそのような特徴に関して特段に言及をしていません。あきらかにfas遺伝子の変異種だと思われます。
  
付記5: fas遺伝子とは、この遺伝子が変異すると茎の 帯化(たいか:fasciation) を誘起する遺伝子のことです。
 
付記:
図4.図2の採取地点から10kmはなれた別の場所で採取した6頭アザミの写真です。うまく全貌の写真が取れないのですが、大輪の裏側に小さな2頭のつぼみが隠れています。
6頭のタンポポプレゼンテーション1

  


2016-08-16 12:32 | カテゴリ:未分類

日本土壌肥料学会2016年度佐賀大会 公開シンポジウム

「事故から5年―農業環境・農作物・農業経済の変遷と課題―」

 

日 時:2016(平成28)年922日(木)13301640

会 場:佐賀大学本庄キャンパスX会場(教養教育大講義室)

主 催:一般社団法人日本土壌肥料学会、日本学術会議 農学委員会土壌科学分科会、農学委員会・食料科学委員会合同IUSS分科会

趣 旨:

  東京電力福島第一原子力発電所の事故によって福島県を中心とする農業は大きな打撃を受けた。事故から5年が経過し、農業環境において様々な放射性物質の低減化対策が検討され、農産物中濃度は基準値を充分に下回るようになった。本シンポジウムでは、5年間にわたり研究が進められてきた農業環境における低減化対策とその効果、農業環境における放射性物質の現状と将来予測、作物摂取による被ばく線量評価、更には原発事故がもたらした農業経済への波及と回復等についてこれまでに取り組んできた専門家に紹介頂き、土壌肥料学会員に広く周知するとともに、一般市民にも公開・普及する。また、今後の課題や営農再開に向けた取り組みなどについて議論する。

 

次 第:

・座長:中尾 淳(京都府立大学大学院生命環境科学研究科助教)

        塚田祥文(福島大学環境放射能研究所副所長、教授)

13:30 開会あいさつ:

         間藤 徹(日本学術会議連携会員、日本土壌肥料学会会長、京都大学大学院農学研究科教授)

13:35 5年間における放射能汚染対策の概要と成果-農地の復興をめざして-」

信濃卓郎(国立研究開発法人農業・食品産業技術総合研究機構 農業放射線研究センター長)

14:05 「果樹における放射性セシウムの動態-果樹園の回復をめざして-」

佐藤守(福島県農業総合センター果樹研究所栽培科専門員)

14:25 「水田における放射性セシウムの動態とモデル化-安全な稲をつくるために-」

江口定夫(国立研究開発法人農業・食品産業技術総合研究機構物質循環研究領域水質影響評価ユニット長)

14:45 「農耕地土壌における放射性セシウムの動態にかかわる有機物の役割-有機物の意外な効果-」

山口紀子(国立研究開発法人農業・食品産業技術総合研究機構有害化学物質研究領域無機化学物質ユニット上級研究員)

14:55 「森林環境における放射性セシウムの分布と挙動-森林・林業の復興にむけての課題-」

金子真司(国立研究開発法人森林総合研究所立地環境研究領域長)

15:15 「福島県における農作物中放射性セシウムとストロンチウム-90濃度および作物摂取による被ばく線量評価-福島県農作物の現状-」

塚田祥文(福島大学環境放射能研究所副所長、教授)

15:35 「原発事故がもたらした農村農業への影響と5 年間の総括-現地の取り組みと復興のいま-」

小山良太(福島大学経済経営学類国際地域経済専攻教授)

16:05 総合討論:

コメンテーター:万福裕造(国立研究開発法人農業・食品産業技術総合研究機構生産体系研究領域バイオマス利用グループ主任研究員)、齋藤雅典(東北大学大学院農学研究科教授)、齋藤 隆(福島県農業総合センター浜地域農業再生研究センター技術研究科主任研究員)、南條正巳*(日本学術会議会員、東北大学大学院農学研究科教授)、木村 武(全国農業協同組合連合会肥料農薬部技術対策課技術主管)

16:40 閉会

 

入場無料

問い合わせ先:佐賀大学農学部 日本土壌肥料学会2016年度佐賀大会運営委員会事務局

                E-mail: jssspn2016@ml.cc.saga-u.ac.jp




  

スライド1
FC2 Management